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Preface

Celebrating the 50th anniversary of the seminal paper by Gale and Shapley, and following
the success of the first MATCH-UP workshop in Reykjav́ık in 2008, we decided to organise
another interdisciplinary workshop on stable matchings and related topics.

Matching problems with preferences occur in widespread applications such as the assign-
ment of school-leavers to universities, junior doctors to hospitals, students to campus
housing, children to schools, kidney transplant patients to donors and so on. The common
thread is that individuals have preference lists over the possible outcomes and the task is
to find a matching of the participants that is in some sense optimal with respect to these
preferences.

The remit of this workshop is to explore matching problems with preferences from the
perspective of algorithms and complexity, discrete mathematics, combinatorial optimiza-
tion, game theory, mechanism design and economics, and thus a key objective is to bring
together the research communities of the related areas.

Unlike in 2008, this time we decided to call for two types of submissions. We required
Format A papers to be original and at most 12-pages long for inclusion in these proceed-
ings. Format B papers had no restriction on length or originality, with just the abstract
of accepted papers being included in what follows.

Our call for papers generated much interest: we received 37 good quality submissions (17
Format A and 20 Format B), which were well-balanced in terms of representing the com-
puting science and economics communities. Due to the time constraints and our strong
intention to avoid parallel sessions, we accepted 26 submissions (10 Format A and 16 For-
mat B). Following the withdrawal of one paper, 25 contributed papers will be presented
at the workshop and appear in these proceedings.

We feel that these papers represent an excellent snapshot of the current state of the art
regarding research in the area of matching problems with preferences.

We would like to conclude by thanking the programme committee (and additional review-
ers), the invited speakers and the authors of all submitted papers for helping to make this
workshop a success.

Péter Biró
Tamás Fleiner
David Manlove
Tamás Solymosi
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Two-Sided Matching with Partial Information

Nicole Immorlica
Department of Electrical Engineering and Computer Science,

Northwestern University,

Email: nickle@eecs.northwestern.edu

A critical problem with the traditional model of two-sided matching is that all agents are
assumed to fully know their own preferences. As markets grow large, it quickly becomes im-
practical for participants to assess their precise preference rankings. We propose a novel model
of two-sided matching in which agents are endowed with partially ordered preferences over can-
didates, but can refine these preferences through interviews. We further assume that an agents
true preference ordering is some strict ordering consistent with this coarse ranking. To learn
more about their preferences, agents must conduct interviews. We assume that the interviews
reveal the pairwise rankings among all interviewed candidates. Our goal is to identify a cen-
tralized interview schedule that uncovers sufficient information to guarantee that the resulting
matching is stable and optimal for a given side of the market, with respect to the underlying true
and strict preferences of the participants. Clearly, such schedules exist; e.g., we could simply
conduct all possible interviews. However, interviews are costly, so we aim to minimize their
number. Our key contributions beyond the model itself are a formalization of what it means
to minimize the number of interviews, a computationally efficient interview minimizing algo-
rithm for a restricted setting, and an NP-completeness result that suggests identifying interview
minimizing schedules are hard in general.

Joint work with Anne Condon, Kevin Leyton-Brown, and Baharak Rastegari.
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Medical Matching in Scotland: Reflections on the Interplay of

Theory and Practice

Rob Irving
School of Computing Science,

University of Glasgow,

Email: Rob.Irving@glasgow.ac.uk

Back in 1997, the Postgraduate Medical Institute in Glasgow proposed a Masters project
involving the development of software to assist with the annual task of assigning graduating
medical students to their training positions in hospitals. (In those days, departments throughout
the University of Glasgow were invited to submit project proposals for students on the Masters
course in Information Technology.) At that time, the assignment process was a ’free market’
graduates had to find their own positions by applying directly to hospitals. As had already
been observed and documented in other contexts, this free market approach led to considerable
chaos, and was profoundly unpopular with all of those involved, particularly the students.

My supervision of this Masters project initiated a period of collaboration with the medical
authorities in Scotland that has continued right up to the present day. Of course, our use
of matching algorithms to allocate medical students to hospital posts was not new the long
history of the National Resident Matching Program (NRMP) in the US had been well-known
and prominent in the literature for many years. However, each context typically has certain
special features that distinguish it from other similar applications, and the requirements of
the Scottish matching scheme, as they developed over the years, have thrown up a variety of
interesting challenges, both theoretical and practical.

The key concept of the stability of a matching was recognised as crucial from the outset,
and has remained so as the detailed requirements of the scheme have changed over time. The
classical stable matching problem finding a stable matching of students to hospitals when strict
preferences are expressed on both sides can be easily and optimally solved by the Gale-Shapley
algorithm. However, the situation becomes potentially more interesting if, for example, students
are to be assigned to pairs of hospitals, or if preferences are not strict, or if couples express
joint preferences, or if hospital preferences are generated from a ’master’ list of student scores.
Conditions of this kind have arisen in the Scottish scheme over the years, typically resulting
in an NP-hard variant of the stable matching problem. The search for satisfactory solutions
in these situations has led to some non-trivial extensions of the Gale-Shapley approach, and
the need to carry out empirical evaluations of competing strategies. It is these variants of the
classical stable matching problem, the relevant theoretical results that have been established,
and the algorithms that have been developed to handle the problems in practice, that form the
subject of this presentation.
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Promoting School Competition Through School Choice: A

Market Design Approach

Fuhito Kojima

The invited talk is based on a paper with the same title, a joint work with John William
Hatfield and Yusuke Narita.

We study the effect of different school choice mechanisms on schools’ incentives for quality
improvement. To do so, we introduce the following criterion: A mechanism respects improve-
ments of school quality if each school becomes weakly better off whenever that school becomes
more preferred by students. We first show that no stable mechanism, or mechanism that is
Pareto efficient for students (such as the Boston and top trading cycles mechanisms), respects
improvements of school quality. Nevertheless, for large school districts, we demonstrate that
any stable mechanism approximately respects improvements of school quality; by contrast, the
Boston and top trading cycles mechanisms fail to do so. Thus a stable mechanism may pro-
vide better incentives for schools to improve themselves than the Boston and top trading cycles
mechanisms.
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Cadet-Branching at U.S. Army Programs

Tayfun Sönmez
Department of Economics,

Boston College,

Email: tayfun.sonmez@bc.edu

The invited talk is based on two papers. The first is a joint work with Tobias B. Switzer
with title ”Matching with (Branch-of-Choice) Contracts at United States Military Academy”.

Prior to 2006, the United States Military Academy (USMA) matched cadets to military
specialties (branches) using a single category ranking system to determine priority. Since 2006,
priority for the last 25 percent of the slots at each branch has been given to cadets who sign a
branch-of-choice contract committing to serve in the Army for three additional years. Of the
three incentive plans implemented under the Officer Career Satisfaction Program (OCSP), this
change in matching has been the most effective in combating historically low retention rates
among junior army officers. Building on theoretical work of Hatfield and Milgrom (2005) and
Hatfield and Kojima (2010), we show that the resulting new matching problem not only has
practical importance but also it fills a gap in the market design literature. Even though the
new branch priorities designed by the Department of the Army fail a substitutes condition,
the cumulative offer algorithm of Hatfield-Milgrom gives a cadet-optimal stable outcome in
this environment. The resulting mechanism restores a number of important properties to the
current USMA mechanism including stability, strategy-proofness and fairness which not only
increase cadet welfare consistent with OCSP goals but also provides the Army with very accurate
estimates of the effect of a change in the parameters of the mechanism on number of man-
year gains by the branch-of-choice incentive program. Our paper also shows that matching
with contracts model have great potential to prescribe solutions to real-life resource allocation
problems beyond domains that satisfy the substitutes condition.

The title of the second paper is ”Bidding for Army Career Specialties: Improving the ROTC
Branching Mechanism”.

Motivated by low retention rates of USMA and ROTC graduates, the Army recently intro-
duced incentives programs where cadets could bid three years of additional service obligation to
obtain higher priority for their desired branches. The full potential of this incentives program is
not utilized, due to ROTC’s deficient matching mechanism. We propose a design that eliminates
these shortcomings and benefits the Army by mitigating several policy problems it has identified.
In contrast to the ROTC mechanism, our design utilizes market principles more elaborately, and
it is a hybrid between a market mechanism and a priority-based allocation mechanism.
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Stability of Marriage and Vehicular Parking

Daniel Ayala, Ouri Wolfson, Bo Xu,
Bhaskar DasGupta, and Jie Lin

University of Illinois at Chicago

Abstract. The proliferation of mobile devices, location-based services
and embedded wireless sensors has given rise to applications that seek to
improve the efficiency of the transportation system. In particular, new
applications are arising that help travelers find parking in urban set-
tings. They convey the parking slot availability around users on their
mobile devices. Nevertheless, while engaged in driving, travelers are bet-
ter suited being guided to an ideal parking slot, than looking at a map
and deciding which open slot to visit. Then the question of how an ap-
plication should choose this ideal parking slot to guide the user towards
it becomes relevant.
Vehicular parking can be viewed as vehicles (players) competing for park-
ing slots (resources with different costs). Based on this competition, we
present a game-theoretic framework to analyze parking situations. We
introduce and analyze parking slot assignment games and present algo-
rithms that choose parking slots ideally in competitive parking simula-
tions. We also present algorithms for incomplete information contexts
and show how these algorithms outperform greedy algorithms in most
situations.

Keywords: Stable Marriage, Spatio-temporal resources, Vehicular Park-
ing

1 Introduction

Finding parking can be a major hassle for drivers in some urban environments.
The advent of wireless sensors that can be embedded on parking slots has enabled
the development of applications that help mobile device users find available
parking slots around their locations. A prime example of this type of application
is SFPark [1]. It uses sensors embedded in the streets of the city of San Francisco,
that can tell if a slot is available. When a user wants to find a parking slot in
some area of the city, the application shows a map with marked locations of the
open parking slots in the area.

While this type of application is useful for finding the open parking slots
around you, it does raise some safety concerns for travelers. The drivers have to
shift their focus from the road, to the mobile device they are using. Then they
have to look at the map and make a choice about which parking slot to choose
from all the available slots that are shown on the map. It would be better (safer)
if the app just guided the driver to an exact location where they are most likely
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2 Ayala et. al.

to find an open parking slot. Then the question arises, which algorithm should
the mobile app use to choose such an ideal parking location?

Our main concern in this work is to answer the preceding question. Regardless
of the safety concerns stated in the previous paragraph, the question still remains
relevant. What is the optimal way of moving towards spatially located resources,
to obtain a resource, when there is competition for the resource?

Parking can be viewed as a continuous query submitted by mobile devices to
obtain information about spatial resources (parking slots). A mobile user wants
to know which is the parking slot to visit in order to minimize various possible
utilities like: distance traveled, walking distance to their destination, or monetary
price of the parking slot. However, parking is also competitive in nature because
after making a choice to visit a particular slot, the success in obtaining that slot
will depend on if any other vehicles closer to that slot also made the same choice.
This competition for resources (slots) lends itself for modeling this situation in
a game-theoretic framework. We then present parking slot assignment games
(Psag) for studying competitive parking situations.

Two categories of Psag will be considered in this work, complete and in-
complete information Psag. For the complete information Psag, we relate the
problem of finding the Nash equilibrium to the Stable Marriage problem [2]. We
show the equivalency of Nash equilibria and Stable Marriage assignments for
instances of Psag.

For the incomplete information Psag, the model that is most realistic and
directly applicable to real-life application of parking slot choice, we present a
gravitational approach for choosing parking. The Gravity-based Parking algo-
rithm (GPA) is presented for this model. We also present an adaptation for GPA
to road networks and show its merits through simulation.

2 General Setup and Notation

The general setup of the parking problem is as follows:

– There are two types of objects as follows.
• A set of n vehicles V = {v1, v2, . . . , vn}.
• A set of m open parking slots S = {s1, s2, . . . , sm}.

– dist : (V ∪S)×S → R is a distance function. It denotes the distance between
a vehicle and a slot, or the distance between two slots.

– cost : V × S → R is a cost function. It denotes the cost of a slot sj ∈ S to
a vehicle vi ∈ V . This cost is a general cost. It could include the distance
from the vehicle to the slot, dist(vi, sj), the walking distance from sj to vi’s
destination, and/or other utilities that vi cares about when choosing a slot.

– Each vehicle is assumed to be moving independently of all other vehicles at
a fixed velocity. Without loss of generality, we assume that the speeds of all
vehicles are the same1.

1 Otherwise, we simply need to rescale the distances for each vehicle in our algorithmic
strategies.
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Stability of Marriage and Vehicular Parking 3

– A valid assignment of vehicles to slots is one where each vehicle is assigned
to exactly one slot. It can be defined as a function g : V → S, where g(v) is
the assigned slot for vehicle v ∈ V .2

– The cost of an assignment g for a player v ∈ V , Cg(v), is defined as cost(v, g(v))
if of all players assigned to slot g(v), v is the closest to it; i.e.

v = argmin
v′∈V :g(v′)=g(v)

{dist(v′, g(v))}. (1)

Here the argmin function returns the parameter that minimizes the given
function. If some other vehicle assigned to g(v) is closer to it than v, then
v’s cost based on g is Cg(v) = cost(v, g(v)) + α, where α is a large penalty
(could be the sum of all costs) for not obtaining a parking slot.

– The total cost of an assignment g, Cg, is defined as:

Cg =
∑

v∈V

Cg(v) (2)

It should be noted that this type of model could be generalized to considering
mobile agents (vehicles) that are looking to obtain one of a set of static resources
(parking slots) on a map. Besides parking, another application that could con-
form to this model is one where taxicabs (mobile agents) are competing to obtain
clients (static resources) that have a location on a map.

3 Parking Slot Assignment Games

One could define a model in which a centralized authority was in charge of
assigning the vehicles to slots. This authority would be looking to minimize
some system-wide objectives (optimizing social welfare). In the transportation
literature this is usually called a system optimal assignment. In [3], we show
how this system optimal assignment can be computed in polynomial time. Even
though this centralized model shows good computational properties, it is difficult
to justify in real life to distributed mobile users that make their own choices.
This is because optimizing social welfare may imply that some travelers will
incur a greater cost for the good of others.

We then model parking as a competitive game in which individual, selfish
players are competing for the available slots. Any game has three essential com-
ponents: a set of players, a set of possible strategies for the players and a payoff
function (cost function) [4]. The payoff function determines what is the cost to
each player based on a given strategy profile. If there are n players in the game
then a strategy profile is an n-tuple in which the ith coordinate represents the
strategy choice of the ith player. It basically represents the choices made by the
n players.
2 Based on this definition, there is a difference between where a vehicle is assigned and

where a vehicle parks. If more than one vehicle is assigned to the same slot, then
the closest one to it will park there. The others are left without parking. This will
always happen when n > m.
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4 Ayala et. al.

In our case for the parking problem, we can define the parking slot assignment
game (Psag) as follows:

– The set of players in Psag is V (the vehicles).
– The set of available strategies to each player is S (the slots).
– The payoffs (costs) for each player in this game can be defined by the Cg

function introduced in section 2. Let A = (sv1 , sv2 , . . . , svn) be the strategy
profile chosen by the players, i.e. slot svi is the chosen slot by vehicle vi,
1 ≤ i ≤ n. Let g(vi) = svi , then the cost for any player vi will be Cg(vi).

– For this game, the penalty of not finding a parking slot, α, will be defined
as a constant quantity larger than the sum of all the costs.

4 Nash Equilibrium for Psag

In this section we introduce the Nash equilibrium for Psag and establish its
relationship with the Stable Marriage problem.

The Nash equilibrium [5] is the standard desired strategy that is used to
model the individual choices of players in a game. It defines a situation in which
no player can decrease its cost by changing strategy unilaterally. The standard
definition of Nash equilibrium translates to the following definition for Psag:

Definition 1 (Nash Equilibrium for Psag). Let A = (sv1 , sv2 , . . . , svn) be a
strategy profile for the Psag. Let A∗

i = (sv1 , sv2 , . . . , svi−1 , s
∗
vi

, svi+1 , . . . , svn−1 , svn),
for s∗vi

&= svi . Let g be the assignment function obtained from strategy profile A
and g∗i be the assignment function obtained from strategy profile A∗

i . Then strat-
egy profile A is a Nash equilibrium strategy for the players if Cg(vi) ≤ Cg∗i

(vi)
for all i and any s∗vi

&= svi .

A∗
i is the strategy profile obtained by only player vi changing strategy from

svi to any s∗vi
&= svi for any 1 ≤ i ≤ n. If the condition in the definition

holds then it means that no player can improve by him alone deviating from the
Nash equilibrium strategy. For the remainder of the paper, equilibrium and Nash
equilibrium will be used interchangeably.

4.1 Stability of Marriage in Psag

A vehicle’s preference in Psag is to minimize its cost. Then a vehicle v’s pref-
erence is to obtain the slot s that minimizes the function cost(v, s). Then, we
say v prefers slot s over slot s′ if cost(v, s) < cost(v, s′). Suppose that the slots
had a similar preference order in which a slot s prefers a vehicle v over v′ if v is
closer to it than v′, i.e. dist(v, s) < dist(v′, s).

Definition 2 (Unstable Marriage [2] in PSAG). An assignment of vehicles
to slots is called unstable if there are vehicles vi and vi′ , assigned to slots sj and
sj′ respectively, but vi′ prefers sj over sj′ and sj prefers vi′ over vi.

In the following sections, we will show the relationship between the Nash
equilibrium for Psag and stable marriage assignments.
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Stability of Marriage and Vehicular Parking 5

4.2 Computing the Psag Nash Equilibrium

Now we show that we can compute the Nash Equilibrium for Psag by computing
stable marriages between the vehicles and the slots.

Theorem 1. Suppose that the vehicles’ preference order is determined by the
cost function and the slots’ preference order is determined by the dist function.
Then an assignment g is a Nash equilibrium if and only if g is a stable marriage
between the vehicles and slots.

Proof. (→) Let g be an assignment that is a Nash Equilibrium. Then for any
v ∈ V , if v deviates strategy unilaterally from g(v), v’s cost will increase.

Suppose to the contrary that g is not a stable marriage between vehicles and
slots. Then there exist v, v′ ∈ V and s, s′ ∈ S such that g(v) = s and g(v′) = s′

but v prefers s′ over s and s′ prefers v over v′. Then the following inequalities
hold:

cost(v, s′) < cost(v, s)
dist(v, s′) < dist(v′, s′)

But then if v deviates to strategy s′ his cost will improve because v is closer
to s′ than v′, and choosing s′ has a lesser cost to him than his current choice s.
This violates the Nash equilibrium assumption. Contradiction.

(←) Now let g be an assignment that is a stable marriage between vehicles
and slots according to their preferences.

Suppose to the contrary that g is not a Nash equilibrium. Then there exists
a vehicle that can deviate from the strategy given by g and improve its obtained
cost. Let v ∈ V be such a vehicle and let g(v) = s, where s ∈ S. Then v can
choose a strategy s′ &= s and improve its obtained cost. Suppose that slot s′ was
assigned to vehicle v′, i.e. g(v′) = s′.

There are two cases to consider.
Case 1: Cg(v) = cost(v, s)

If Cg(v) = cost(v, s) then by definition v was the closest vehicle to s amongst
those that chose s. Now suppose that v can improve its obtained cost by deviating
to another strategy s′. If v improves its obtained cost it means that he will obtain
his new chosen slot s′, otherwise he would pay a penalty α that is larger than
his previous cost. Then,

dist(v, s′) < dist(v′, s′) (3)

If v improves its obtained cost then it also means that his obtained cost on
the new slot is better than the one he was paying with his previous slot. Then,

cost(v, s′) < cost(v, s) (4)
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6 Ayala et. al.

Condition (3) implies that slot s′ preferred v over v′. Condition (4) implies
that vehicle v preferred s′ over s. These two conditions together are a violation
of marriage stability. Therefore, g is not a stable marriage. Contradiction.

Case 2: Cg(v) = cost(v, s) + α
This is a case where n > m and v chooses s but does not obtain it. We assume
that for vehicles that will not obtain a slot, the stable marriage algorithm will
simply assign the vehicle to its smallest cost slot. Suppose v can deviate to s′

and improve its cost.
This means that it would definitely obtain the new slot and improve its cost

that way (if the slot is not obtained then there’s no way of improving). Then,

dist(v, s′) < dist(v′, s′) (5)

For this case, condition (5) is sufficient to show that g is not a stable marriage.
v will not obtain any slot according to assignment g, and by (5), s′ prefers v
over v′. Then v should have been assigned to s′ in the first place by the stable
marriage algorithm since v really has no partner. Therefore, g is not a stable
marriage. Contradiction.

Then by the contradictions obtained in both cases it follows that no vehicle
could have improved by deviating strategies from those defined by the assignment
g. Therefore, g is a Nash Equilibrium assignment.

By the equivalency obtained between the Nash equilibrium for Psag and
stable assignments in Psag, one can compute an equilibrium by finding a stable
assignment between the vehicles and slots. Then we found the equilibrium for
this two-sided matching problem between agents (vehicles) and spatially located
resources (parking slots) by assigning preference orders (based on distance to
agent) to the items.

5 Gravitational Strategies for Incomplete Information
Context

5.1 Incomplete Information Psag

We’ve shown how one can compute the Nash Equilibrium for Psag by computing
a stable marriage assignment between the vehicles and the slots. But this equi-
librium is applicable only in a complete information setting. This is one where
the vehicles are aware of what their payoffs will be based on their decisions and
the decisions of others. For Psag, this means that each vehicle is aware of the
locations of all the other vehicles and are aware of their cost functions.

This complete information model is hard to justify in practice because of
privacy and security concerns. Not all vehicles will be willing to share the location
information at all times. Furthermore, tracking the locations of vehicles at all
times, and sharing the locations of all of them with all the users of a system so
that they can have up-to-the-second location data on all other potential parking
competitors seems infeasible.
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Stability of Marriage and Vehicular Parking 7

Then we wish to analyze Psag in an incomplete information context. In this
context, the players have no knowledge about the locations of the other players.
Since they do not have complete access to the distance function, dist, then they
have no way of knowing the payoff function for this game; i.e. given a strategy
profile, none of the players have a way of knowing what its payoff will be.

In the incomplete information Psag, players make some prior probabilistic
assumptions about the locations of the other vehicles in the game and the analy-
sis is performed based on the expectations given by the prior distributions. One
can compute the expected costs based on the distribution that is used to denote
the location of a vehicle. Then a player will be looking to minimize its expected
cost. In this context, the analysis will compute the Nash equilibrium strategies
for the players but considering expected costs. This equilibrium is analogous to
the Nash equilibrium for Psag (Definition 1) but instead of using cost given by
the cost functions (Cg), it uses expected cost.

For this work, each player will assume that other players are distributed
uniformly across the map. Unfortunately, computing the equilibrium for this
incomplete information context is very complicated in general, even for sim-
ple cases in the number line [3]. Then heuristics are needed to compute ideal
strategies for players in this more realistic model.

5.2 Gravity for Parking

The heuristic we want to introduce is one that pushes vehicles towards areas
where they are most likely to find a parking slot. Since all other vehicles are as-
sumed to be distributed uniformly across space, this will increase the probability
of finding a parking slot upon arrival to the area with a larger amount of avail-
able slots. Also, we want the algorithm to take into account the vehicle’s location
and its proximity to the surrounding slots. In [3], we proposed the Gravity-based
Parking Algorithm (GPA), which encompasses these desired properties by using
vector addition of force vectors.

In the GPA, slots are said to have a gravitational pull on the vehicles. At any
point in time, each slot has a gravitational force on the vehicle that will depend
on the distance from the vehicle (magnitude) and location of the slot (direction).
So then for each slot, a force vector is generated around the vehicle. Then, all of
these vectors are added and the vehicle moves in the direction of the resultant
vector (total gravitational force) for a specified time step. Then the process is
repeated at the beginning of each time interval.

The classical formula for gravitational force is F = Gm1m2
d2 where G is the

gravitational constant, m1 and m2 are the masses of the respective objects and
d is the distance between the objects. But for our purposes we can assume
that the masses of the objects are constant. We want to compute the vector
that represents total gravitational force generated by all the available slots to a
vehicle and use the direction of that vector to move the vehicle in that direction.
Then we consider a more simplified formula for gravitational force, since all the
masses are constant, represented by:

F (v, s) = 1/dist(v, s)2 (6)
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8 Ayala et. al.

F (v, s) is the gravitational force generated by slot s towards vehicle v.
To consider general costs, this formula can be generalized to:

F (v, s) = 1/cost(v, s)2 (7)

With formula (7), one will compute gravitational pull by considering the
general cost as the distance between the vehicle and the slot.

5.3 Gravity-based Parking Algorithm (GPA)

Let z denote the velocity of each vehicle (in units/s), which is constant for all
vehicles. Each time step for the algorithm will be 1 second. Each vehicle v will
perform the following steps in order to move one time-step at a time towards a
parking slot:

– Let S′ be the set of currently available slots (updated at every time step).
Then for each s ∈ S′ generate vector of magnitude F (v, s) that starts at v’s
location in direction of s.

– Add the computed force vectors and the result will be the total gravitational
force generated by all the available slots on v.

– Move z units (velocity) in the direction given by the total force vector. If the
closest slot to v is at a distance less than z then move straight to the closest
slot.

These steps define the proposed heuristic for vehicles to use in the incomplete
information Psag. The intuition behind the algorithm is that a vehicle is better
served moving towards areas of higher density of parking slots when the force to
closer slots (determined by distance to them) is not strong enough.

Figure 1 shows what a gravitational force field generated by five sample slots
would look like. The arrows represent the direction at which a vehicle will move
when it is located at the start point of the arrow and the small dots represent the
slots. This diagram gives us an idea of how vehicles move across the map when
using GPA and it shows that they will eventually converge to a slot. The GPA
was evaluated and performed well in simulations against a greedy approach [3].

6 GPA on a Road Network

On a real-world road network, vehicles are constrained to move only on roads.
In this setting we will still use a gravitational approach. It will also be based on
the gravity equation defined by equation (6), but now the distance between a
vehicle and slot is computed by using the travel distance across the network.

A vehicle can only make a routing choice upon arrival to an intersection,
whereas before (in free-space) a vehicle could change direction at any point in
time. Therefore, the GPA algorithm will only be used at each intersection by
each vehicle. The road network is modeled as a graph G = (N, E) where the
vertices (N) represent intersections and the edges (E) are the road segments
that connect the intersections.
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Stability of Marriage and Vehicular Parking 9

Fig. 1. Force field generated by 5 slots

Instead of adding up all the gravity vectors for all slots (as in Euclidean
space), the vehicle will aggregate the gravity information for all slots into spe-
cial direction vectors (one for each possible direction out of the intersection).
Suppose that the intersection where vehicle v is located has k outgoing edges
e1, e2, ..., ek ∈ E. Then there will be k direction vectors g1, g2, ..., gk where each
vector will have a direction according to its respective embedded edge. The mag-
nitudes of these vectors will start at 0.

Then for each slot s, the shortest path is computed from v to s and the
gravity force g is computed using equation (6). Let ei be the first edge to be taken
according to the computed shortest path. Then gi is updated to be gi = gi + g.

After repeating this procedure for each slot, the vehicle will use the computed
direction vectors g1, g2, ..., gk to make its route choice. From this point, we will
introduce two variants of the GPA algorithm that will be evaluated as candidate
algorithms for using a gravity-based approach for parking on embedded road
networks. The two variants will only differ in how the eventual edge to be taken
is computed based on the direction vectors.

6.1 Deterministic Angular GPA (DA-GPA)

In the Deterministic Angular GPA (DA-GPA) the direction vectors g1, g2, ...gk

will be added to produce a resultant vector r. This resultant vector will be located
between two of the directions to choose from, say ei ∈ E and ej ∈ E. Let θi be
the angle distance between r and ei and θj be the angle distance between r and
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10 Ayala et. al.

ej . Then, if θi < θj , v will choose ei as the next edge to travel, otherwise it will
choose ej as the next edge to travel through.

6.2 Randomized Magnitude GPA (RM-GPA)

In the Randomized Magnitude GPA (RM-GPA) the direction vectors g1, g2, ..., gk

will be used as part of a probabilistic scheme. Let T = |g1|+ |g2|+ ... + |gk|, i.e.
the addition of the magnitudes of the k direction vectors. Then let pi = |gi|/T
for 1 ≤ i ≤ k. Then each edge ei ∈ E which is an outgoing edge of v’s current
intersection will be chosen with probability pi.

6.3 Deterministic Magnitude GPA (DM-GPA)

In the Deterministic Magnitude GPA (DM-GPA) the direction vectors g1, g2, ..., gk

will be used to choose the next direction to move towards. The direction with
the vector with the largest magnitude will be chosen.

The efficiency of these three methods will be evaluated through simulation.

7 Simulation and Results

In this section we will evaluate DA-GPA, RM-GPA, and DM-GPA against the
greedy parking algorithm. The greedy algorithm simply moves each vehicle to-
wards its current closest slot.

7.1 Simulation Environment

The simulation tests the three GPA variants with varying number of values of
n and m for the embedded road network in Euclidean space. The simulation
is run on a one mile by one mile map where roads are generated that either
run from east to west or north to south. Locations for slots on these roads are
pre-generated as well.

The map is then partitioned into 16 equal-sized square regions. A random
permutation of the regions is generated (uniform distribution) and is used as
the ranking of the popularity of each region for available slots. To choose each
of the m open slots, first a random number is generated to determine which
region to choose a slot from. The Zipf distribution with its skew parameter and
the regional popularity previously generated are used to generate this random
number. Then a random slot (uniform) is chosen from the region denoted by the
Zipf number. The n vehicles’ initial positions are generated using the uniform
distribution on the grid.

After generating the vehicles and slots, the algorithms are tested. The GPA
algorithms were tested against the greedy parking algorithm, which simply moves
each vehicle towards its current closest slot. For the GPA algorithms, the vehicles
will move as described in the procedures on section 6.
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Stability of Marriage and Vehicular Parking 11

When a vehicle reaches an open parking slot, the time it took for it to find
that slot is saved. Then a new slot is chosen randomly (uniform) on a randomly
chosen region (Zipf). Also a new vehicle is generated at a random location on
the grid (uniform). The simulation run stops when a given time horizon of 3,600
seconds is surpassed.

The parameters for the simulation are:

– n - the number of vehicles.
– m - the number of slots.
– k - the regional skew of the Zipf distribution.

The values that were tested for each parameter are detailed in table 1. For
each configuration of the parameters, 20 different simulation runs were generated
and tested.

Parameter Symbol Range

Vehicles n {40,80}
Slots m {20,30,40}

Zipf Skew k {0, 1, 2, 3}
Table 1. Parameters tested on Simulation

7.2 Simulation Results

Figure 2 shows the improvement of the DM-GPA algorithm over the greedy park-
ing algorithm. In the best case, the highest improvement that was attained was
one of 40% (n = 40, m = 40, skew = 1). We can see that the lowest improvement
is seen when the skew is 0 (uniformly distributed). Higher improvements are seen
in highly skewed situations (skew of 1 or above), although as the regional skew
increases past 1, the performance decreases. The RM-GPA and DA-GPA also
showed positive improvements over the greedy algorithm but were not better
in performance than the DM-GPA. The results for RM-GPA and DA-GPA are
thus omitted for space considerations.

8 Conclusions

In this paper our main goal was to analyze vehicular parking. We presented
two models that can be used to study the parking problem in a game-theoretic
framework.

For the complete information model, in which vehicles are aware of the lo-
cation and cost information of other players, we presented an algorithm for
computing the Nash equilibrium for parking slot assignment games (Psag). We
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12 Ayala et. al.

established the relationship between the parking problem and the stable mar-
riage problem. We also showed that the Nash equilibrium was actually equivalent
to a stable marriage between vehicles and slots.

For the incomplete information model, vehicles are not aware of the locations
of the other mobile users that are also looking for parking. For this model we
presented the Gravity-based Parking Algorithm (GPA). For the adapted GPA to
road networks we presented the DA-GPA, RM-GPA and DM-GPA. The merits
of the GPA’s were tested using simulations.
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Testing Substitutability of Weak Preferences
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Abstract

In many-to-many matching models, substitutable preferences constitute the
largest domain for which stable matchings are guaranteed to exist. Recently,
Hatfield et al. [4] have proposed an efficient algorithm to test substitutability of
strict preferences. In this note we show how the algorithm by Hatfield et al. can
be adapted in such a way that it can test substitutability of weak preferences
as well. When restricted to the domain of strict preferences, our algorithm is
faster than Hatfield et al.’s original algorithm by a linear factor.

Keywords: Substitutability, Many-to-Many Matchings, Computational
Complexity, and Preference Elicitation.
JEL: C62, C63, and C78

1. Introduction

In matching problems, the aim is to match agents in a stable manner to
objects or to other agents while considering the preferences of the agents in-
volved. Matching theory has significant applications in assigning residents to
hospitals, students to schools, etc. and has received tremendous attention in
mathematical economics, computer science, and operations research [see, e.g.,
3, 9].

In various matching models individual preferences are supposed to be re-
sponsive, i.e., for any two sets that differ only in one object, the agent prefers
the set containing the more preferred object [9, page 128f.]. For example in the
case in which a hospital can hire multiple doctors, the hospitals are commonly
assumed to submit preferences that render the choice between a pair of doctors
independent of other available outcomes [4]. An alternative is to allow hospitals
to submit substitutable preferences, which allows for considerably more flexibil-
ity in expressing preferences over groups of doctors. An agent’s preferences are
substitutable if whenever its most preferred set of objects from a set of objects

∗Corresponding author
Email addresses: aziz@in.tum.de (Haris Aziz), brill@in.tum.de (Markus Brill),

harrenst@in.tum.de (Paul Harrenstein)
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S contains an object w, then so will its most preferred set of objects from any
subset of S that still includes w [9, page 173f.].

Substitutable preferences were introduced by Roth [10] and constitute the
largest domain in which stable matchings are guaranteed to exist. In many
matching models, substitutability is in fact a necessary and sufficient condition
for the existence of stable allocations [see 4, footnote 4].1 The significance of
substitutability leads to the natural algorithmic problem of testing whether a
given preference relation is substitutable or not. Recently, Hatfield et al. [4]
have presented a polynomial-time algorithm for this problem, which they point
out in their conclusion “could be distributed to market participants for use in
the preparation of their preference relations for submission.”

As for most results in the literature concerning substitutability, the original
definition of substitutability and the algorithm of Hatfield et al. assume that
individuals can only express strict preferences, i.e., preferences without indif-
ferences. In many settings, however, allowing indifferences is not only a natural
relaxation but also a practical necessity. Allowing for indifferences, however,
may significantly affect the properties and structure of stable matchings. For
example, stable matchings may obtain different cardinalities [7] and for marriage
markets man-optimal or woman-optimal stable matchings are no longer guaran-
teed to exist [9]. Moreover, weak preferences may also be a source of complexity
for many computational problems concerning stable matchings. For instance,
checking whether a stable roommate matching exists is polynomial-time solv-
able for strict preferences [6], but becomes NP-complete when indifferences are
allowed [8].

For the more general domain which allows individuals to express indifferences
(weak preferences), Sotomayor [12] extended the concept substitutability and
provided an appropriate definition. Moreover, she showed that a stable matching
in many-to-many matching markets with weak and substitutable preferences is
still guaranteed to exist.

In this note, we examine the notion of substitutability for the general case of
weak preferences from a computational point of view. We formulate conditions
that characterize substitutable preferences. Using these conditions, we find that
testing substitutability of weak preferences can be performed in polynomial
time. When restricted to the domain of strict preferences, our algorithm is
faster than the algorithm of Hatfield et al. [4] by a linear factor.

2. Preliminaries

Let U be a finite set of alternatives. A weak preference relation is a transitive
and complete relation R on 2U . R is said to be strict if it is also anti-symmetric.
Let P and I denote the strict and symmetric parts of R, respectively. A set
X ⊆ U is called acceptable if X R ∅. By an equivalence class of R we understand

1These settings include many-to-one matchings, many-to-many matchings, and many-to-
many matchings with contracts.
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a family {Y ∈ U : X I Y } for some subset X in U . Each preference relation R
induces a choice function C that returns, for each X ⊆ U , the set of all R-
maximal subsets of X, i.e.,

C (X) = {Y ⊆ X : Y R Z for all Z ⊆ X}.

Observe that, defined thus, C(X) invariably contains a single set if R is strict
but may contain more than one set if R allows for indifferences. Even if C(X)
may contain the empty set, C(X) itself is never empty.

Example 1. Let U = {a, b, c, d} and let the preference relation R restricted to
the acceptable set be defined as follows.

{a, b, d} I {b, c, d} P {a, b} I {b, c} I {a, c} P ∅.

Then, C(U) = {{a, b, d}, {b, c, d}} and C({a}) = {∅}.

Given a preference relation R, let s denote the maximal size of an indifference
class consisting of acceptable sets. Observe that for each X ⊆ U the size of C(X)
is bounded by s and that a preference relation is strict if and only if s = 1.
Furthermore, let u denote the size of U and ` the number of acceptable sets.

A very general and expressive way of representing R is via a preference list L
that contains all acceptable sets in descending order of preferability and using
brackets to group sets in the same equivalence class.2 For a preference relation
R represented in list form and for X ⊆ U it can be checked in time O(`|X|)
whether a given alternative is in C(X).

3. Substitutability and weak preferences

In the restricted setting of strict preferences the choice function invariably
chooses (a family consisting of) a single set. For weak preferences the choice
function may select a family of any number of sets and the definition of substi-
tutability for strict preferences has to be adapted accordingly. Sotomayor [12]
observed that substitutability for strict preferences can be characterized in two
equivalent ways.3 Both of these definitions can naturally and conservatively
be extended to the domain of weak preferences. In this more general setting,
however, the conditions these generalizations give rise to (S1 and S2 in Def-
inition 1 below) are no longer equivalent. Sotomayor has argued that both
conditions capture an essential aspect of substitutability and suggested that for
weak preferences substitutability be defined as their conjunction.

2This list representation is reminiscent to the representation by individually rational lists
of coalitions used in the context of hedonic coalition formation games [1].

3Substitutability for strict preferences is identical to Sen’s condition α used in choice the-
ory [11] but the meanings of the choice sets are different [see 5, footnote 4]. Also from the
perspective of choice theory, Brandt and Harrenstein [2] considered choice functions that are
rationalized by relations over sets of alternatives, which is formally similar to the setting
considered here.
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Figure 1: Conditions S1 and S2. For the diagram on the left, we assume that C (A) = {X}
and C (B) = {Y, Y ′}. Then, S1 is satisfied but S2 is not. In the diagram on right, we assume
that C (A) = {X,X′} and C (B) = {Y }. Then, S2 is satisfied but S1 is not.

Definition 1. A preference relation R is substitutable if and only if the fol-
lowing two conditions hold:

(S1 ) for all non-empty A,B ⊆ U with B ⊆ A we have that for all X ∈ C (A)
there is some Y ∈ C (B) such that X ∩B ⊆ Y , and

(S2 ) for all non-empty A,B ⊆ U with B ⊆ A we have that for all Y ∈ C (B)
there is some X ∈ C (A) such that X ∩B ⊆ Y .

Example 2. Consider the preference relation R from Example 1. It can be
verified that R satisfies S1 and violates S2. For the latter, take A = U and
B = {a, b, c}. Then,

C(B) = {{a, b}, {b, c}, {a, c}}.

Now Y = {a, c} is in C (B), but there exists no X ∈ C (A) such that X∩B ⊆ Y .
Hence, R is not substitutable.

The following lemma captures the intuitive idea that a most-preferred subset
will remain most-preferred and that no subsets will become most-preferred that
were not previously so when some other subsets are withdrawn from considera-
tion without other subsets being added [cf. 4, Lemma 1].

Lemma 1. For all A,B ⊆ U with B ⊆ A,

C (A) ∩ 2B 6= ∅ implies C (B) = C (A) ∩ 2B.

Proof. Assume C (A) ∩ 2B 6= ∅. Then, X ∈ C (A) ∩ 2B for some X ⊆ U . First
consider an arbitrary Y ∈ C (B). Then Y R X. Hence, Y ∈ C (A) ∩ 2B as well.
Now consider an arbitrary Y /∈ C (B). If Y /∈ 2B , immediately Y /∈ C (A)∩2B . If
Y ∈ 2B , we have X P Y and therefore Y /∈ C (A). Also then Y /∈ C (A)∩2B .
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4. Testing substitutability

We now outline a way to test substitutability of weak preferences. The idea
utilizes an insight of Hatfield et al. [4] that instead of checking all violations of
substitutability, one may restrict one’s attention to violations of a specific type.
Formally, by an S1-violation for R we understand a pair (A,B) ∈ 2U × 2U such
that B ⊆ A and for some X ∈ C (A) it is the case that X ∩ B * Z for all
Z ∈ C (B). Obviously, a preference relation R satisfies S1 if and only if there
are no S1-violations for R.

Lemma 2. Let R be a preference relation. If there exists an S1-violation for R,
then there exist acceptable sets X,Y ⊆ U and x ∈ X such that (X ∪Y, Y ∪{x})
is also an S1-violation for R.

Proof. Assume that (A,B) is an S1-violation for R. Then there is some X ∈
C (A) such that X ∩ B * Z for all Z ∈ C (B). As C (B) 6= ∅, there is some
Y ∈ C (B) such that X ∩ Y is maximal with respect to set inclusion, i.e.,
X ∩ Y ( X ∩ Z for no Z ∈ C (B). Obviously, X and Y are acceptable. By
our assumption, X ∩ B * Y and we may therefore assume the existence of
some x ∈ (X ∩ B) \ Y (see Figure 2). We prove that (X ∪ Y, Y ∪ {x}) is an
S1-violation for R, in particular we show that

(i) Y ∪ {x} ⊆ X ∪ Y ,

(ii) X ∈ C (X ∪ Y ), and

(iii) X ∩ (Y ∪ {x}) * Z for all Z ∈ C (Y ∪ {x}).

As x ∈ X, it is obvious that (i) holds. As for (ii), observe that X ∈ C (A) ∩
2X∪Y . Lemma 1 implies C (X ∪ Y ) = C (A) ∩ 2X∪Y and thus X ∈ C (X ∪ Y ).

Finally, consider an arbitrary Z ∈ C (Y ∪ {x}). Observe that Y ∈ C (B) ∩
2Y ∪{x}. By another application of Lemma 1, we get C (Y ∪{x}) = C (B)∩2Y ∪{x}

and, therefore, Z ∈ C (B). Moreover, by choice of Y , it is not the case that
X∩Y ( X∩Z, i.e., either X∩Y * X∩Z or X∩Y = X∩Z. If the former, then
there is some z ∈ X∩Y with z /∈ X∩Z. If the latter, then x /∈ Z. In either case,
there is some z ∈ X ∩ (Y ∪ {x}) such that z /∈ Z. Hence, X ∩ (Y ∪ {x}) * Z,
which proves (iii).

S2-violations are defined similar to S1-violations. A pair (A,B) ∈ 2U × 2U

is an S2-violation for R if B ⊆ A and for some Y ∈ C (B) it is the case that
Z ∩ B * Y for all Z ∈ C (A). Clearly, R satisfies S2 if and only if there are no
S2-violations for R. Moreover, R is substitutable if and only if there are neither
S1-violations nor S2-violations for R.

Lemma 3. Let R be a preference relation. If there exists an S2-violation for R,
then there exist acceptable sets X,Y ⊆ U and x ∈ X such that (X ∪Y, Y ∪{x})
is also an S2-violation for R.

5
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Figure 2: The left diagram illustrates Lemma 2, the right one Lemma 3. In either case, Y is
chosen so as to maximize and minimize the areas in gray, respectively.

Proof. Assume that (A,B) is an S2-violation for R. Then there is some Y ∈
C (B) such that Z ∩B * Y for all Z ∈ C (A). As C (A) 6= ∅, there is some X ∈
C (A) such that X\Y is minimal with respect to set-inclusion, i.e., Z\Y ( X\Y
for no Z ∈ C (A). Obviously, X and Y are acceptable. By our assumption,
X ∩ B * Y and we may assume the existence of some x ∈ (X ∩ B) \ Y (see
Figure 2). We prove that (X ∪ Y, Y ∪ {x}) is also an S2-violation for R, in
particular we show that

(i) Y ∪ {x} ⊆ X ∪ Y ,

(ii) Y ∈ C (Y ∪ {x}), and

(iii) Z ∩ (Y ∪ {x}) * Y for all Z ∈ C (X ∪ Y ).

As x ∈ X, (i) obviously holds. As for (ii), observe that Y ∈ C (B)∩ 2Y ∪{x}.
Lemma 1 implies that C (Y ∪ {x}) = C (B)∩ 2Y ∪{x} and thus Y ∈ C (Y ∪ {x}).

Finally, consider an arbitrary Z ∈ C (X ∪ Y ). Observe that X ∈ C (A) ∩
2X∪Y . Another application of Lemma 1 yields C (X ∪ Y ) = C (A) ∩ 2X∪Y

and, therefore, Z ∈ C (A) ∩ 2X∪Y . Moreover, by choice of X, it is not the
case that Z \ Y ( X \ Y . Observe that Z \ Y ⊆ X \ Y and it follows that
Z \ Y = X \ Y . Hence, x ∈ Z and, since x /∈ Y , we obtain Z ∩ (Y ∪ {x}) * Y ,
which proves (iii).

We can exploit Lemmas 2 and 3 to obtain a polynomial-time algorithm
to check the substitutability of a preference relation. The algorithm works
as follows. Instead of checking all potential violations of S1 and S2, due to
Lemmas 2 and 3 we can restrict our attention to S1- and S2-violations of the
form (X ∪Y, Y ∪{x}), where X,Y ⊆ U are acceptable and x ∈ U . The number
of these potential violations is polynomial in the number of acceptable subsets
in R and a polynomial-time algorithm is obtained by exhaustively checking each
of them. We note that the algorithm is not different from that of Hatfield et al.
[4] in that it exhaustively checks certain violations.
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Theorem 1. It can be checked in time O(`2u2(`+ s2)) whether a given prefer-
ence relation in list representation is substitutable.

Proof. To test substitutability, we need to check whether both S1 and S2 hold
for a preference relation R represented by list L. This is equivalent to verifying
that neither S1-violations nor an S2-violations exist for R.

Let us first consider the case of S1. To check S1, we know from Lemma 2,
that we can restrict our attention to violations of the form (X ∪ Y, Y ∪ {x}) for
some X,Y ∈ L and x ∈ X. Therefore, the maximum number of pairs we need
to check is upper-bounded by

(
`
2

)
u.

Verifying an S1-violation of type (A,B) = (X ∪ Y, Y ∪ {x}) requires us
to perform the following three steps. First, compute C(A). This takes time
O(`u). Then, compute C(B), which also takes time O(`u). Finally, test the
main condition:

for all X ∈ C (A) there is some Y ∈ C (B) such that X ∩B ⊆ Y .

This can be performed in time O(s2u). In total, verifying a violation of type
(A,B) = (X ∪ Y, Y ∪ {x}) takes time

O(`u) + O(`u) + O(s2u) = O(`u + s2u).

The time needed to check whether an S1-violation exists is then equal to the
maximum number of pairs we need to check multiplied by the time required to
verify one S1-violation, which equals

O
((

`
2

)
u
)
×O(`u + s2u) = O(`2u(`u + s2u)).

The same analysis holds for checking whether an S2-violation exists. There-
fore there exists an algorithm which runs in time O(2`2u(`u+s2u)) = O(`2u(`u+
s2u)) = O(`2u2(` + s2)) and tests the substitutability of a preference rela-
tion.

By letting s = 1, we get the following result for strict preferences as a
corollary.

Corollary 1. It can be checked in time O(`3u2) whether a given strict preference
relation is substitutable.

On the domain of strict preferences, the (worst case) asymptotic running
time of the algorithm turns out to be slightly faster than the algorithm of
Hatfield et al. [4]: O(`3u2) as compared to O(`3u3). The reason for this is that
Hatfield et al. considered violations the form (x, y, (X ∪ Y ) \ {x, y}), involving
two alternatives and two acceptable sets, whereas in this paper we found that
one can restrict attention to S1- and S2-violations of the form (X ∪Y, Y ∪{x}),
which involve one alternative less. In practice one might have some expectation
that s would be a polynomial function of `. In that case, we could even obtain
a polynomial bound entirely in terms of ` and u.
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Abstract

We study the quality of stable matchings from the individuals’ viewpoint. To each matching
we associate its rank-profile describing the individuals’ satisfaction with the matching. We pro-
vide a complete and computationally efficient characterization of the rank-profiles that can arise
from men-optimal, women-optimal, and arbitrary stable matchings. We also study uniquely sta-
ble rank-profiles, that is, for which there exists a stable matching problem that has only one
stable matching and this matching has this particular rank-profile. We give some necessary and
some sufficient conditions for unique stability and show that characterizations of men-optimal
and women-optimal rank-profiles is reduced to the characterization of uniquely stable rank-
profiles. Our characterizations imply that the set of all stable rank-profiles is monotone, unlike
the sets of men-optimal, women-optimal, and uniquely stable rank-profiles. We also show that
both stable and uniquely stable matchings may be highly disadvantageous for all participating
individuals, simultaneously. Namely, we show that there are stable and even uniquely stable
rank-profiles in which no individual gets a better partner than his/her middle choice. Further-
more, this result is sharp, since a stable matching in which all individuals get a partner ranked
below their middle choice cannot be stable. Finally, we demonstrate an “instability of stable
matchings” from a quality point of view.

Key Words: stable matching, preference list, rank-profile, Gale-Shapley algorithm and
theorem.

1 Introduction

In this paper we consider the stable matching problem in which members of two groups of individuals
(men and women) have strict rankings of the individuals of the other group. A matching is
called stable if no men-women couple prefer one another more than their respective partners in the
matching.

The celebrated result by [10] shows that a stable matching always exists, regardless of the
individuals’ rankings, and can be found algorithmically efficiently. Furthermore, there are unique
group-optimal stable matchings (men-optimal and women-optimal), in which all members of the
group simultaneously are paired with their “best possible” partners, in the sense that no individual
gets a more preferred partner in any other stable matching. These properties, the equilibrium
nature of stable matchings, the coincidence of individual and group optimality, and the algorithmic
tractability make stable matching based models very attractive in social sciences and economics.
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†RUTCOR, Rutgers University, 640 Bartholomew Road, Piscataway NJ 08854-8003;
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(liliya.fedzhora@vdot.virginia.gov)
§FBI, Engineering Research Facility Building 27958A Quantico, VA 22135; (steven.jaslar@ic.fbi.gov)
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In fact, a very large number of recent publications utilize stable matchings for various applications;
see, for example, [1, 2, 3, 4, 5, 6, 7, 9, 13, 14, 20, 18, 17, 16, 19].

Naturally, the quality and fairness of stable matchings based models received a lot of attention.
A natural parameter to consider in such investigations is the rank of the matched partner in the
individual’s preference list. For instance, [12] considered the so called egalitarian stable matchings
in which the sum of the ranks of the partners of all individuals in a stable matching is minimized,
and showed that such an egalitarian stable matching can also be obtained in polynomial time. [15]
solved the so called minimum regret stable matching problem, in which the maximum rank of any
partner (or in other words, the unhappiness of the least satisfied individual) is minimized.

Most of the studies in the literature focus on optimization and algorithmic issues, arising in
the course of finding a specific, extremal (optimal, according to some objective) stable matching
for a given preference list. It is however equally interesting to understand how “bad” or “good”
stable matching solutions could be over all possible preference lists (in a worst case sense, even
if we optimize for each particular instance). More precisely, we are interested in the individuals’
satisfaction, in the worst scenario, that is, we consider the maximum happiness of the happiest
individual in a stable matching, when the maximization takes place over all stable matchings of
a given instance, and ask how unhappy such a “most happy” individual can be? For instance,
is it possible that in a men-optimal stable matching no man is coupled with his most preferred
woman partner? We show that unfortunately this is quite possible, and that even more so, there
are infinitely many instances when even the happiest individual in the community is pretty-pretty
unhappy.

More generally, we associate a so called rank-profile to each matching, describing the level
of satisfaction of all individuals with their partners within the given matching, and provide a
computationally efficient characterization of the rank-profiles that can arise from the men-optimal,
women-optimal, and arbitrary stable matchings. We also show that characterizing the men-optimal
and women-optimal stable rank-profiles is equivalent, in some sense, with characterizing rank-
profiles that arise from the stable matchings instances that have a unique stable matching. We
obtain several interesting properties of such rank-profiles.

Finally, we demonstrate “an instability of the stable matchings” by exhibiting instances for
which the addition of just one more couple can “spoil the life of a happy community”.

In this short extended abstract we could not include all of the above mentioned results and
their proofs, and refer the reader for the full version to [8].

2 Main Definitions and Results

We consider stable matching problems involving n men and n women, where n is a given pos-
itive integer. Let N = {1, . . . , n} denote the set of indices, while M = {m1, . . . ,mn} and
W = {w1, . . . , wn} denote the sets of men and women, respectively. A stable matching problem is
described by the set of individual preferences, that is, by a set of 2n mappings:

rw : M→ N for w ∈W and rm : W→ N for m ∈M. (1)

For example, we say that man m ∈M is of rank j ∈ N for woman w ∈W if rw(m) = j and that
woman w ∈ W prefers man m ∈ M to man m′ ∈ M if rw(m) < rw(m′). We consider the most
traditional model, in which the preference lists contain no ties, that is, all 2n mappings rw, w ∈W
and rm, m ∈M are bijections. In what follows, a stable matching problem is given by a preference
list σ = {rσw | w ∈W} ∪ {rσm | m ∈M} consisting of 2n bijections, as in (1), and we shall denote
by Σn the set of all possible preference lists of men M and women W. When it is unambiguous,
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which preference list is meant, we will omit the upper index σ and refer simply by rw and rm to
the corresponding preferences.

A set π ⊆M×W is called a matching (or pairing), if for each man m ∈M there is a unique
woman w ∈W such that (m,w) ∈ µ and for each woman w ∈W there is a unique man m ∈ M
such that (m,w) ∈ π). If (m,w) ∈ π, we say that w is m’s partner, and m is w’s partner in the
matching π.

Given a preference list σ ∈ Σn, and a matching π ⊆M×W, we say that a pair (m,w) ∈M×W
is a breaking couple for π, if m and w mutually prefer each other to their current partners in π,
that is, if rσw(m) < rσw(m′) and rσm(w) < rσm(w′) for m′ ∈M and w′ ∈W for which (m,w′) ∈ π and
(m′, w) ∈ π.

A matching π is called stable, if there is no breaking couple for it. The celebrated result of [10]
claims that every preference list has a stable matching. (In fact, it may have many, and those form
a lattice; see Section 3 for more details). Let us denote by Π(σ) the set of all stable matchings of
a preference list σ ∈ Σn.

Given a preference list σ ∈ Σn and a matching π ⊆M×W, let us associate to them two vectors
k(π, σ) ∈ NM and `(π, σ) ∈ NW defined for m ∈M and w ∈W by

km(π, σ) = j if rm(w) = j for the woman w ∈W for which (m,w) ∈ π,
`w(π, σ) = j if rw(m) = j for the man m ∈M for which (m,w) ∈ π.

Let us call the pair of vectors (k(π, σ), `(π, σ)) the rank-profile of the matching π with respect to the
preference list σ. Let us note that these two vectors themselves carry all necessary information about
the level of satisfaction of the individuals in M ∪W with respect to the matching π, even though
these vectors alone do not carry enough information to determine π or σ. To simplify notation, we
refer to k(π, σ) and `(π, σ) as k(π) and `(π) whenever σ is clearly defined by the context, as k(σ)
and `(σ) whenever π is clearly defined by the context, and simply by (k, `) whenever both π and σ
are clearly defined.

Furthermore, whenever π is not explicitly defined, we assume that π = {(m1, w1), (m2, w2),...,
(mn, wn)}, since for any matching we can relabel the women to obtain π in this form. Moreover,
we will write simply ki and `j instead of kmi and `wj , and consequently, we consider rank-profiles
as pairs of vectors k, ` ∈ Nn.

Let us denote by Rn the set of all rank-profiles, that is, the set of all pairs of vectors (k, `),
where k ∈ NM and ` ∈ NW. Let us note that not all rank-profiles correspond to stable matchings.
For instance, k = (2, 2) and ` = (2, 2), for n = 2, cannot, that is, no instance σ ∈ Σ2 has a stable
matching π ∈ Π(σ) such that k = k(π, σ) and ` = `(π, σ). This is simply because no matter how
we choose a matching π ∈M×W and a preference list σ ∈ Σ2, any pair (mi, wj) ∈ (M×W) r π
must be a breaking couple for π in σ.

In this paper we will characterize the rank-profiles of stable matchings. For a given preference
list σ ∈ Σn let us denote by S(σ) the set of rank-profiles of all stable matchings of σ,

S(σ) = {(k(π, σ), `(π, σ)) | π ∈ Π(σ)} ,

and let Sn denote the set of all stable rank-profiles, that is, Sn =
⋃
σ∈Σn

S(σ).
Our first result characterizes stable rank-profiles.

Theorem 1 (k, `) ∈ Sn if and only if∑
i∈I

ki +
∑
j∈J

`j ≤ n|I|+ n|J |+ |I ∩ J | − |I||J | (2)
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holds for all subsets I, J ⊆ N. Furthermore, the membership (k, `) ∈ Sn can be tested in O(n5)
time, and if (k, `) ∈ Sn, then we can construct in the same time an instance σ ∈ Σn for which
k = k(σ) and ` = `(σ).

Consider first a few small examples. For instance, for n = 3 the rank-profile ((1, 1, 2), (3, 3, 1))
is not stable, since inequality (2) fails for the subsets M = {3},W = {1, 2}, because 2 + (3 + 3) =
8 > 7 = 3(1 + 2) − (1 × 2 − 0). Furthermore, ((1, 2, 2), (2, 3, 3)) 6∈ S3, because for the subsets
M = {2, 3}, and W = {1, 2, 3} we get (2 + 2) + (2 + 3 + 3) = 12 > 11 = 3(2 + 3) − (2 × 3 − 2).
Similarly, ((1, 2, 3), (2, 1, 3)) 6∈ S3, since (2 + 3) + (2 + 3) = 10 > 9 = 3(2 + 2) − (2 × 2 − 1) for
M = {2, 3}, and W = {1, 3}.

Let us consider now several corollaries of Theorem 1. Two special cases of Theorem 1, corre-
sponding to |I| = |J | = 1 and |I| = |J | = n, can be reformulated as follows.

Corollary 1 If (k, `) ∈ Sn then (ki, `j) 6= (n, n) whenever i 6= j.

Proof. Apply (2) with I = {i} and J = {j}. Then the left hand side of (2) is 2n, while the right
hand side is only 2n− 1. �

For example, rank-profiles ((1, 2), (2, 1)) for n = 2 and ((1, 1, 3), (1, 3, 1)) for n = 3 are not stable
according to the above Corollary 1.

Corollary 2 If (k, `) ∈ Sn then
∑

i∈N ki +
∑

j∈N `j ≤ n(n+ 1).

Proof. Apply (2) with I = N and J = N. �

For example, the following rank-profiles are not stable:

((1, 2), (2, 2)), ((1, 2, 3), (2, 2, 3)), ((2, 2, 2), (2, 2, 3)).

We shall derive two more consequences of Theorem 1. Let us write f ≤ g for two vectors f and
g, if those are labeled by the same domain, and the inequality holds componentwise.

Corollary 3 Set Sn is anti-monotone with respect to the relation ≤ applied between rank-profiles.
In other words, if (k, `) ∈ Sn and (k′, `′) ∈ Rn such that k′ ≤ k and `′ ≤ ` hold, then (k′, `′) ∈ Sn.

Proof. Conditions (2) are clearly monotone in k and `. �

Corollary 4 If n is an odd integer and ki = `j = n+1
2 for all i, j ∈ N then (k, `) ∈ Sn.

Proof. We need to derive from Theorem 1 that for arbitrary subsets I, J ⊆ N we have

n+ 1

2
(|I|+ |J |) ≤ n|I|+ n|J |+ |I ∩ J | − |I||J |.

Since |I ∩ J | − |I||J | ≤ |I||J | − (|I|+ |J |) + n, it is enough to show that

n+ 1

2
(|I|+ |J |) ≤ n(|I|+ |J |)− |I||J |+ |I|+ |J | − n,

which follows readily by |I| ≤ n and |J | ≤ n. �

Corollary 4 implies, somewhat surprisingly, that there are instances σ ∈ Σn and stable matchings
π ∈ Π(σ) for which all individuals are pretty unhappy. Of course, for some other stable matchings
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of the same instance, some individuals may be much happier. Let us return to the problem of
measuring individuals’ satisfaction. As one of the simplest measures of a given preference list
σ ∈ Σn and a stable matching π ∈ Π(σ), let us introduce

h(π, σ) = min

{
min
i
ki(π, σ), min

j
`j(π, σ)

}
and h(σ) = min

π∈Π(σ)
h(π, σ), (3)

that is, the “happiness” of the “happiest” individual in his/her “luckiest” stable matching of σ.
Clearly, if h(σ) = 1, then there is a “very happy” individual, who gets his/her best choice in some
of the stable matchings of σ.

It was observed by Conway (see, for example, [15]) that for every preference list σ ∈ Σn the set
Π(σ) forms a lattice, that is, if α, β ∈ Π(σ) are two arbitrary stable matchings, then there exists
γ, δ ∈ Π(σ) such that

ki(γ) = max{ki(α), ki(β)} and `j(γ) = min{`j(α), `j(β)};

ki(δ) = min{ki(α), ki(β) and `j(δ) = max{`j(α), `j(β)}

for all i, j ∈ N. In particular, for every preference list σ ∈ Σn there exists unique men-optimal and
women-optimal matchings πM , πW ∈ Π(σ), for which we have

k(πM ) ≥ k(π) ≥ k(πW ) and `(πW ) ≥ `(π) ≥ `(πM ) (4)

for all stable matchings π ∈ Π(σ). In fact the algorithm by [10] can be executed in two natural
ways, the so called men-oriented and women-oriented way, and these produce the unique matchings
πM and πW . Thus, both of these extremal stable matchings can be obtained in O(n2) time, implying
that h(σ) can in fact be computed for every instance σ in O(n2) time, because by (3) we have

h(σ) = min

{
min
i
ki(π

M , σ), min
j
`j(π

W , σ)

}
. (5)

Of course, h(σ) is a very weak measure of happiness of the community, since there might be
many very unhappy individuals at the same time, who can get only their very low ranked choices,
no matter how we choose a stable matching for σ. However, even this simple measure can be very
informative; for example, if for some preference list h(σ) has a high value, then all individuals will
be unhappy to some extent no matter how we choose a stable matching for σ. Let us note that
by Corollary 4 we have some preference lists σ ∈ Σn for which h(π, σ) is very high for some stable
matching π ∈ Π(σ). For the same preference list, however, we may have another stable matching
π′ ∈ Π(σ) for which h(π′, σ) is much lower. It is an interesting question, how high h(σ) can be. To
investigate this, let us introduce

h(n) = max
σ∈Σn

h(σ). (6)

In studying h(n), special instances which have a unique stable matching will play an important
role. Let us denote by Σ∗n the set of all those preference lists σ ∈ Σn for which |Π(σ)| = 1, and let

h∗(n) = max
σ∈Σ∗n

h(σ). (7)

Clearly, for σ ∈ Σ∗n we have πM = πW = π by (3); hence, the computation of h(σ) in (5) can be
simplified for such instances. Furthermore, since Σ∗n ⊆ Σn, we get by (6) and (7) that h∗(n) ≤ h(n)
for all n ∈ Z+.

Our next result claims that the example in Corollary 4 is essentially tight, even for instances
with a unique stable matching:
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Theorem 2 For every positive integer n we have⌈n
2

⌉
≥ h(n) ≥ h∗(n) =

⌊n
2

⌋
. (8)

Interesting open problems are (i) to describe the instances for which h(σ) is high (for example,
h(σ) > cn for some constant c) and (ii) to compute the value of h(σ) for typical (say, random)
instances.

Besides stable rank-profiles, it would also be very interesting to understand which rank-profiles
can arise from men-optimal and/or from women-optimal stable matchings. As we have recalled
earlier, for every preference list σ ∈ Σn there exists a unique men-optimal stable matching πM =
πM (σ), and a unique women-optimal stable matching πW = πW (σ). Let us denote by (kM (σ), `M (σ))
and (kW (σ), `W (σ)) respectively, the corresponding rank-profiles, and introduce

Mn =
{

(kM (σ), `M (σ))
∣∣ σ ∈ Σn

}
and Wn =

{
(kW (σ), `W (σ))

∣∣ σ ∈ Σn

}
.

We say that a rank-profile (k, `) is men-optimal (women-optimal) if (k, `) = (kM (σ), `M (σ))
(respectively, (k, `) = (kW (σ), `W (σ))) for some preference list σ ∈ Σn. As we have seen above,
preference lists which have a unique stable matching play a helpful role in providing lower bounds for
h(n), and in the study of stable rank-profiles, in general. Let us finally define Un =

⋃
σ∈Σ∗n

S(σ)
and let us call (k, `) ∈ Un a uniquely stable (US) rank-profile. It follows from the above definitions
that

Un ⊆ Wn ∩Mn ⊆
{
Wn

Mn

}
⊆ Sn ⊆ Rn.

We shall show that in fact most containment relations above are strict. Despite this, the charac-
terization of men-optimal rank-profiles Mn and women-optimal rank-profiles Wn can be reduced
to the characterization of uniquely stable rank-profiles Un.

3 Further notations and properties

In this section we recall several well-known properties of stable matchings from the literature, which
will be instrumental in our proofs.

First of all, it will be convenient to represent an input preference list in one matrix, as in Figure
1. For a pair m ∈M and w ∈W the cell (m,w) contains in the upper left corner the rank rm(w)

x y z

a
1

2
3
3

2
2

b
1
3

2
1

3
1

c
3

1
1

2
2
3

Figure 1: An example σ ∈ Σ3 involving three men M = {a, b, c} and three women W = {x, y, z}.

of woman w in the preference list of man m, while the lower right corner contains rw(m), the rank
of m in the preference list of w. For example, for man a ∈M and woman x ∈W in Figure 1 we
have ra(x) = 1, i.e., x is a’s first choice, while rx(a) = 2, that is, a is only the second choice of
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x. The bold entries in Figure 1 correspond to the matching π = {(a, y), (b, x), (c, z)}, which is not
stable, since the pair (a, z) is a breaking couple for π.

Let us recall from [10] that in the “men-oriented” algorithm the following two stages are re-
peated, until a stable matching is found: each man without a current partner makes an offer to
the first woman in their preference list who did not yet reject him. Each woman rejects all offers,
except one man’s who is ranked the highest in her preference list among those who made an offer
to her. When no man is rejected, all men must have a partner, and the algorithm stops. In the
“women-oriented” variant, the roles of men and women are interchanged. Despite a high degree of
freedom (in what order men make offers, etc.) it is known that these procedures always converge
to the same stable matching. More precisely, it was proven in [10] that:

Fact 1 For every instance σ ∈ Σn the men-oriented and the women-oriented algorithms always
produce, in at most O(n2) steps respectively, the unique men-optimal πM = πM (σ) and unique
women-optimal πW = πW (σ) stable matchings, for which k(πM ) ≤ k(π) and `(πW ) ≤ `(π) hold for
all stable matchings π ∈ Π(σ). �

For instance, for the example of Figure 1 in the men-oriented version, first both a and b make
offers to x, and c makes an offer to y. The offer of b is rejected, and hence he makes a second
offer to y, who is his second choice. Then y has two offers, one from c in the first step, and one
from b, and since she prefers b to c, she rejects c, who then makes his second offer to z. At this
moment all women have exactly one offer, so nobody is rejected and the algorithm stops, outputting
πM = {(a, x), (b, y), (c, z)} as the men-optimal stable matching. Analogously, the women-oriented
procedure produces πW = {(a, z), (b, y), (c, x)}. In fact, in this example we have only two stable
matchings, Π(σ) = {πM , πW }. We can see that k(πM ) = (1, 2, 2) and `(πW ) = (1, 1, 2), while we
have k(πW ) = (2, 2, 3) and `(πM ) = (2, 1, 3), and indeed, for these we have k(πM ) ≤ k(πW ) and
`(πW ) ≤ `(πM ) (where we listed these vectors keeping the natural orders, {a, b, c} for the men, and
{x, y, z} for the women). An immediate corollary of Fact 1 is the following:

Fact 2 If πM (σ) = πW (σ) for a preference list σ ∈ Σn then |Π(σ)| = 1, that is, σ ∈ Σ∗n. �

Let us call a pair (mi, wj) ∈M×W a men rejection pair if in the course of the men-oriented
algorithm w rejects the offer of m at one point. Analogously, we can define women rejection pairs.
The following properties are well-known and easy to derive.

Fact 3 Given an instance σ ∈ Σn, the men rejection pairs and the women rejection pairs are always
the same in any variant of the men-oriented and women-oriented algorithms. Denoting these sets
respectively by RM = RM (σ) and RW = RW (σ), we obtain that RM ∩RW = ∅, because

• for all (mi, wj) ∈ RM we have rmi(wj) < ki(π
M ) and rwj (mi) > `j(π

M );

• for all (mp, wq) ∈ RW we have rmp(wq) > kp(π
W ) and rwq(mp) < `q(π

W ).

For instance, for the example of Figure 1 we have RM = {(b, x), (c, y)} and RW = {(b, z)}.
The following very useful observation can be found for instance in [11].

Fact 4 The men-oriented algorithm terminates when the last woman receives her first offer.
Analogously, the women-oriented algorithm terminates when the last man receives his first offer.
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4 Men-optimal, women-optimal, and uniquely stable rank-profiles

4.1 Main concepts and relations between them

In section 4 we consider men-optimal (MO), women-optimal (WO), and uniquely stable (US) rank-
profiles. Given n, we denote the corresponding sets of rank-profiles byMn,Wn and Un, respectively.
Let us recall that we denote the set of all rank-profiles by Rn and the set all stable ones by Sn.

By definition, each US rank profile is simultaneously MO and WO and each MO or WO rank-
profile is stable, that is, Un ⊆ Mn ∩Wn, Mn ∪Wn ⊆ Sn. The second inclusion is strict already
for n = 3. For example, rank-profile ((2, 2, 2), (2, 2, 2)) ∈ R3 is stable, yet not uniquely stable
(SYNUS), and it is neither men- nor women-optimal, see section ??.

We conjecture that the first containment is in fact an equality.

Conjecture 1 If a rank-profile is both men- and women-optimal then it is US, that is, Un =
Mn ∩Wn.

This statement is not obvious, since a rank-profile can be MO for one preference list and WO
for another one. However, computations for n = 2, 3 and 4 confirm this conjecture.

By Theorem 1, the set of all stable rank-profiles Sn is monotone, that is, (k, `) ∈ Sn and
(k′, `′) ≤ (k, `) imply that (k′, `′) ∈ Sn. Yet, it is not so with Mn,Wn, and Un already for n = 3.

For example, we show that ((1, 1, 3), (2, 2, 1)) is SYNUS; it is men-optimal but not women-
optimal, while ((1, 1, 3), (2, 2, 3)) is uniquely stable. Hence, U3 is not monotone, for example,
((1, 1, 3), (2, 2, 1)) ≤ ((1, 1, 3), (2, 2, 3)). Further we show that ((1, 2, 3), (2, 2, 2)) is SYNUS; it is
WO but not MO. Hence, W3 is not monotone, since ((1, 1, 3), (2, 2, 1)) ≤ ((1, 2, 3), (2, 2, 2)). By
symmetry, M3 is not monotone either.

In general, it seems difficult to characterizeMn,Wn or Un. Here we provide only some sufficient
conditions for unique stability, and also show (Theorem 3) that characterization ofMn (as well as
Wn) is reduced to characterization of Un. It is an open question whether a membership inMn,Wn

or Un can be tested in polynomial time.
Necessary conditions for the unique stability can be found in Appendix B of [8].

4.2 Sufficient conditions

Proposition 1 If (k, `) ∈ Un, then (k′, `′) ∈ Un+1 for all k′ = (k, kn+1) and `′ = (`, `n+1), where
kn+1 and `n+1 are arbitrary integers between 1 and n+ 1.

Proof. Assume that (k, `) ∈ Un, and consider a corresponding preference list σ ∈ Σ∗n. To describe
a preference list σ′ ∈ Σ∗n+1 which corresponds to the rank-profile (k′, `′) ∈ Un+1 we define the
preferences of the individuals as follows:

r′mi
(wj) = rmi(wj) for i, j ∈ N; r′wj

(mi) = rwj (mi) for i, j ∈ N; r′mi
(wn+1) = n+ 1

for i ∈ N; r′wj
(mn+1) = n+ 1 for j ∈ N; r′mn+1

(wn+1) = kn+1, r′wn+1
(mn+1) = `n+1.

All the undefined preferences (of man mn+1 and woman wn+1) can be filled in arbitrarily. Then,
due to the properties of σ′ constructed above, in the men-oriented procedure only man mn+1 makes
an offer to woman wn+1, and in the women-oriented procedure only woman wn+1 makes an offer
to man mn+1. Thus, in both cases (mn+1, wn+1) form a couple in the final stable matching, and
since the preferences of the first n− n individuals did not change, these stable matchings coincide,
by our assumption about σ. Hence, we have σ′ ∈ Σ∗n+1 and has rank-profile (k′, `′). �

For example, ((1), (1)) ∈ U1; hence ((1, 2), (1, 2)) ∈ U2; this in its turn, implies that
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((1, 2, 3), (1, 2, 3)) ∈ U3, . . . , ((1, 2, . . . , n), (1, 2, . . . , n)) ∈ Un.

There is an alternative proof. Clearly, the unique matching, ((1, 1), . . . , (n, n)), is stable with
respect to the unanimous instance, when all men and women have the same preference list (1, . . . , n).
Hence, the corresponding rank-profile (ku, `u) = ((1, 2, . . . , n), (1, 2, . . . , n)) is uniquely stable. In
fact, Proposition 1 implies a stronger claim.

Proposition 2 A rank-profile (k, `) ∈ Un whenever (k, `) ≤ (ku, `u).

Proof. Let us generate uniquely stable rank-profiles recursively beginning with (k, l) = ((1), (1)) ∈
U1 and applying all extensions of Proposition 1. Clearly, (k, `) will be obtained in such a way if
and only if (k, `) ≤ (ku, `u). �

Of course, not every uniquely stable rank-profiles can be obtained in this way. For exam-
ple, rank-profiles ((1, 1, 3), (2, 2, 3)), ((1, 1, 3), (2, 2, 2)), ((1, 2, 2), (2, 2, 2)) ∈ U3 but they are not ma-
jorized by ((1, 2, 3), (1, 2, 3)).

Proposition 3 If (k, `) ∈ Un then (ki, `j), (ki, kj), and (`i, `j) are not equal (n, n) whenever i 6= j.

Proof. The fact that (ki, `j) 6= (n, n) for i 6= j follows by Corollary 1. The other two claims are
symmetric, and it is enough to show e.g. that (`i, `j) 6= (n, n) whenever i 6= j. For this, assume
indirectly that `i = `j = n for some i 6= j, and consider the preference list σ ∈ Σ∗n for which (k, `)
is the rank-profile of the unique stable matching. In the women-oriented algorithm for σ we have
both women wi and wj making offers to all men, implying that all men receives at least two offers.
This contradicts the fact that the algorithm terminates when the last man receives his first offer.
This contradiction proves the claim. �

An important relation between unique stability and men-optimality is given by the next claim.

Theorem 3 If a rank-profile (k, `) ∈ Sn−1 is men-optimal then (k′, `′) ∈ Un whenever
`′ = (`, n), k′ = (k, kn), and 1 ≤ kn ≤ n. Moreover, for kn = 1 the inverse is also true, namely, if
((k, 1), (`, n)) ∈ Un then (k, `) ∈ Sn−1 and it is men-optimal.

Obviously, the symmetric claim for WO rank-profiles holds, too. By this Theorem, the member-
ship test for Mn−1 (or Wn−1) is reduced to such a test for Un. There are several other corollaries.

Corollary 5 Rank-profile ((k, kn), (`, n)) ∈ Rn is uniquely stable whenever ki = 1 and li < n for
all i = 1, . . . , n− 1.

Proof. (k, `) ∈ Rn−1 is men-optimal, since k = (1, . . . , 1). By Theorem 3, ((k, kn), (`, n)) ∈ Un. �

Let us consider examples. Rank-profile ((2, 2), (1, 1)) is WO but not MO. Hence, ((2, 2, 1), (1, 1, 3))
is not US. However, by corollary 5, ((2, 2, 3), (1, 1, 3)) ∈ U3 (and ((2, 2, 2), (1, 1, 3)) ∈ U3, too).
This shows that the assumption kn = 1 in the second part of Theorem 3 is essential and also
that U3 is non monotone. Furthermore, ((1, 1, 3), (2, 2, 1)) is men-optimal (though not US), hence
((1, 1, 1, 3), (2, 2, 4, 1)) is US. In contrast, ((2, 2, 2), (2, 2, 2)) is not men-optimal (see subsection ??)
and hence ((2, 2, 2, 1), (2, 2, 2, 4)) is not uniquely stable (though it satisfies all necessary conditions of
unique stability which will be given in subsection ??). Let us also remark that ((2, 2, 2, 2), (2, 2, 2, 4)),
((2, 2, 2, 3), (2, 2, 2, 4)), ((2, 2, 2, 4), (2, 2, 2, 4)) ∈ U4.

In contrast to Corollary 5, not any rank-profile majorized by (k, `) = ((1, ..., 1, kn), (n−1, ..., n−
1, n)) is uniquely stable. For example, ((1, 1, 3), (2, 2, 1)) is SYNUS, it is MO but not WO (see
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section ??), though ((1, 1, 3), (2, 2, 2)) and ((1, 1, 3), (2, 2, 3)) are US. In fact all components of (k, `)
can be reduced without loss of the unique stability, except `n = n which cannot be reduced to 1.

Somewhat surprisingly, Theorem 3 implies the following “anti-monotone” property.

Corollary 6 If ((k, 1), (`, n)) ∈ Un then ((k, kn), (`, n)) ∈ Un, where 1 ≤ kn ≤ n and (k, `) ∈ Rn−1.

Proof. By Theorem 3, if ((k, 1), (`, n)) ∈ Un then (k, `)) is men-optimal and if (k, `)) is men-optimal
then ((k, kn), (`, n)) ∈ Un for any kn between 1 and n. �

This anti-monotone property can be strengthened as follows.

Proposition 4 If ((k, kn), (`, n)) ∈ Un then ((k, kn + 1), (`, n)) ∈ Un, where 1 ≤ kn < n and
(k, `) ∈ Rn−1.

Proof. Since we assume ((k, kn), (`, n)) ∈ Un, there exists a preference list σ ∈ Σ∗n for which both
the men- and women-oriented algorithms yield the same rank-profile ((k, kn), (`, n)).

Consider then the women-oriented algorithm. In this procedure woman wn makes n offers, and
is rejected by all men mj , j < n. Therefore, we must have

rmj (wn) > kj for all j = 1, ..., n− 1. (9)

Furthermore, man mn must be the one who receives his first offer last, and consequently, he does
not receive any other offer in this algorithm. This implies that we must also have

rwj (mn) > `j for all j = 1, ..., n− 1. (10)

Let us now choose index j such that rmn(wj) = kn + 1, and create a new preference list σ′

from σ by interchanging preferences rmn(wj) = kn + 1 and rmn(wn) = kn, and leaving all other
preference values unchanged.

We claim that σ′ ∈ Σ∗n, completing the proof. To see this claim, let us run first the women-
oriented algorithm for σ′. Since the first n − 1 rows of the preference table did not change, and
since the inequalities (9), this algorithm will run exactly the same way as for σ.

Let us compare next the runs of the men-oriented algorithm on σ and σ′. Notice that on σ′

man mn makes now one new offer to woman wj , which he did not make in the run on σ. This new
offer may result in the rejection of some other men’s offers, which were not rejected in the run on
σ. This is however not the case, since if another men’s offer, say mi’s, to woman wj is rejected
by this new offer of man mn, then we must have rwj (mi) > rwj (mn) > `j by (10), implying that
i 6= j, and hence man mi’s offer must have been rejected in the run on σ, as well (otherwise that
run could not have terminated with rank-profile ((k, kn), (`, n))). Thus, both algorithms terminate
the same way on σ′ as on σ, proving our claim. �

It seems that this claim can be strengthen further as follows.

Conjecture 2 If ((k, kn), (`, n)) ∈ Un then ((k, k′n), (`, n)) ∈ Un, where (k, `) ∈ Rn−1, 1 ≤ kn ≤ n,
and 2 ≤ k′n ≤ n.

This claim was verified by computer for n ≤ 4. For kn = 1 and, more generally, for kn ≤ k′n it
follows from Theorem 3. As we already know, it does not generalize the case 1 = k′n < kn.

Lemma 1 Let n ≥ 3. If ((1, . . . , 1), (`1, ..., `n−1)) ∈ Un−1 such that `j < n−1 for all j = 1, ..., n−1,
and `n < n is a positive integer, then we have ((1, ..., 1), (`1 + 1, `2 + 1, ..., `n−1 + 1, `n)) ∈ Un.
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Proposition 5 If k = (1, . . . , 1) then a rank-profile (k, `) ∈ Un if and only if `j = n for at most
one j ∈ N.

Proof. By Corollary 6, at most one of the `j values can be equal to n. If `j = n for some j then
Theorem 3 implies the statement. If `j < n for all j = 1, .., n then Lemma 1 implies the claim. �

According to this proposition, the following rank-profiles are SYNUS:

((1, 1), (2, 2)), ((1, 1, 1), (1, 3, 3)), ((1, 1, 1, 1), (1, 1, 4, 4)) , . . . , ((1, . . . , 1, 1, 1), (1, . . . , 1, n, n)),

while the following (together with all rank-profiles which are majorized by them) are US:

((1, 1), (1, 2)), ((1, 1, 1), (2, 2, 3)) ((1, 1, 1, 1), (3, 3, 3, 4)), . . . , ((1, . . . , 1, 1), (n− 1, . . . , n− 1, n)).
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1 Introduction

Many economic transactions consist of simple, short-lived and informal relationships, with the

typical buyer-seller relationship being the classic example. Yet some of the most important

economic relationships are much more long-term and formal. The employee-employer relation-

ship, for example, or a marriage-type partnership between two individuals. For those types of

relationships the process by which agents seek out and form their partnerships – the matching

process – is especially crucial. Each individual wants to secure the best partner possible, but in

doing so they must face the fact that others are competing for the same partners, and potential

mates may not always reciprocate their feelings.

While some matching markets are now centralized in order to streamline the costly process of

searching for and impressing potential partners1, the majority are not. Most labor and marriage

markets remain decentralized, and can therefore be imagined as a sequence of interactions in

which agents periodically have the opportunity to break their current partnerships to form new

ones. That is the type of matching process this paper is concerned with.

The popular equilibrium concept for matching markets is stability. A stable matching is an

assignment of partnerships such that no matched agent would rather be single and no two agents

not matched with one another would prefer each other over their current partners. Stability is

intuitively appealing since it means that no agent can unilaterally improve their situation. It thus

represents an ultimate resting point for a system of self-interested agents looking for their best

match. But will a completely unguided matching market necessarily attain such an outcome?

The answer to that question was answered in the affirmative by Roth and Vande Vate (1990), who

outline a fully decentralized process (described in detail in the next section) by which one-to-one

two-sided matching markets converge to stability with probability one.2

Importantly, however, many matching markets possess more than one stable matching, and a

corollary of Roth and Vande Vate’s (1990) main result is that all stable matchings can be arrived

at with some positive probability if all agents are initially unmatched. Such a possibility result

is certainly interesting, but it leads to more questions. Since different stable matchings can have

very different welfare implications, both for individual agents and for the market as a whole, it

seems important to consider whether or not some matchings will be more likely to occur than

others when a matching market proceeds in a decentralized fashion. Further, if some matchings

1Examples include the market matching new doctors to residencies (Roth and Peranson,
1990) and markets matching city children to public schools (Abdulkad́ıroğlu, Pathak and Roth,
2005; Abdulkad́ıroğlu, Pathak, Roth, and Sönmez, 2005). In these instances of centralized
matching, all participants submit ordinal lists of preferences or priorities for partners and an
algorithm is used to assign partnerships.

2Their work has since been extended (with minor restrictions on preferences) by Klaus and
Klijn (2007) and Kojima and Unver (2008) for the cases of many-to-one and many-to-many
matching markets respectively.
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are more likely than others, which types of matchings are more or less likely?

Previous work (Boudreau, 2011) has shown that, indeed, some stable matchings are more

likely to occur than others for certain matching markets. That same work also shows that the

most efficient stable matching in terms of agents’ combined satisfaction with their partners is

not always the most likely stable matching to occur as the result of Roth and Vande Vate’s

decentralized process. This latter result is an important, though somewhat unfortunate, result.

While Roth and Vande Vate’s (1990) work shows that decentralized matching markets can always

attain a form of equilibrium, Boudreau (2011) demonstrates that the equilibrium most likely to

be reached may be less desirable than other equilibria that could have been reached.

This paper builds on that work, further exploring the functioning of decentralized matching

markets. Given that the most efficient stable matching is not always the most likely outcome for a

decentralized market, this paper attempts to identify factors that contribute to that phenomenon.

That is, it attempts to figure out which types of matching markets will see their most efficient

outcome also be the most likely result of decentralized matching, and which will not.

Accomplishing this task theoretically proves to be difficult due to the complexity of catego-

rizing markets based on their ordinal preference lists. Instead, as in some previous studies of

matching markets (Boudreau, 2008; Boudreau and Knoblauch, 2010), Monte Carlo methods are

used. By generating a wide variety of sample markets with randomly endowed preferences and

simulating the decentralized matching process for each market thousands of times, it is possible

to obtain an estimate of the probability distribution of each market’s stable outcomes. Along

with the features of each sample market (such as characteristics of agents’ ordinal preference

lists), these estimates provide a large data set that can be analyzed empirically.

Based on data from thousands of simulated matching markets, probit regression analysis

supports two major conclusions. First, a market’s potential level of efficiency, as measured by its

most efficient stable outcome, alone is not a significant predictor of a market’s tendency toward

efficiency. Second, there are two measurable factors that do have significant, non-linear impacts

on the likelihood that a market’s most likely outcome will be (in)efficient: the number of stable

matchings that the market possesses and the level of correlation among the preferences of each

side of the market.

A market obviously must have more than one stable matching in order to have any question

of which stable outcome will emerge. Accordingly, a larger number of stable matchings makes a

market more likely to tend toward a less-efficient outcome, though perhaps only to a point. The

effect appears to be quadratic, suggesting that at some point a larger number of stable matchings

allows for more opportunity for a market to tend toward efficiency. Preference correlation has

a similar effect, although the relationship is flipped. As preferences on either or side of the

market become more correlated – as men all agree on the order in which they rate women’s

attractiveness, for example – the likelihood of an efficient outcome being the most likely result
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of decentralized matching increases. This makes sense since perfectly correlated preferences

eliminate any debate over efficiency. Preference correlation too displays evidence of a quadratic

effect, however, suggesting that high-but-not-complete levels of correlation do make less-efficient

outcomes more likely.

2 Model

The type of matching markets considered here are classic “marriage” matching markets, which

were first formally introduced by Gale and Shapley (1962). A marriage market consists of a

set M of men and a set W of women, each of whom wants to match with just one agent from

the set they do not belong to (hence the term one-to-one two-sided matching). Each man

i = 1, . . . , n possesses a complete, strict, and transitive preference ordering over the set of all

women and the option of remaining single dictated by a ranking function, rmi . A ranking of

rmi(wj) = ` indicates that woman j is man i’s `th choice, so man i prefers woman j to woman k

if rmi(wj) < rmi(wk). Each woman j = 1, . . . , n, similarly has a complete, strict, and transitive

preference ordering over men dictated by rwj .

The collections of ordinal preference rankings for the two sets of agents are specified as Rm

for men and Rw for women. For simplicity it is assumed that that |M | = |W | = n, and that all

agents rank the option of remaining single as last, so rmi(mi) = n + 1. A marriage matching

market can then be defined in terms of the number of agents on each side of the market and

their corresponding preferences, (n,Rm, Rw).

A matching, µ, is a one-to-one function from M ∪W to itself such that, for all m ∈ M and

w ∈ W , µ(m) = w if and only if µ(w) = m. If µ(m) is not contained in W then µ(m) = m,

indicating that man m is unmatched or matched with himself, with a symmetric statement

holding for unmatched women. For any given matching µ if there exists a man and woman that

are not matched with each other but who prefer one another to their current partners at µ, that

couple is called a blocking pair. A stable matching is one that does not possess any blocking

pairs.3

Gale and Shapley (1962) proved that there always exists at least one stable matching for

any marriage matching market. In many cases, however, there may be more than one stable

matching, in which event the set of stable matchings can be ranked in a variety of ways. One way,

which will be used here, is to rank stable matchings according to their choice-count, which is the

sum of the rankings that agents give their partners under a given matching µ:
∑

a∈M∪W ra(µ(a)).

Since stable matchings with lower choice-counts mean a higher level of aggregate satisfaction for

the members of the market, this is one notion of efficiency used for matching markets (McVitie

3If all agents do not rank the option of being single as last, stability also requires that no
individual would rather remain single than be with their assigned partner.
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and Wilson, 1971; Irving, Leather and Gusfield, 1987). The most efficient matching(s) in this

sense would therefore be the matching(s) with the lowest choice-count.4

In terms of how a decentralized market can arrive at a stable outcome, Roth and Vande Vate

(1990) proved that the following process converges to a stable matching in a finite number of

steps with probability one, starting from any initial matching. As in Boudreau (2011) the process

is referred to as randomized tâtonnement because the French term for “groping” embodies the

idea of unguided market adjustment.5

Randomized Tâtonnement Process:

Step 1. Find all possible blocking pairs existing in the current match, µt.

Step 2. Randomly select one of the blocking pairs, {mi, wj}, and satisfy them by matching
them together so that µt+1(mi) = wj . If mi and wj were not single in µt, this leaves their
former partners, µt(mi) and µt(wj) single in µt+1. Note that in the current model, this
pair is necessarily then a blocking pair for the next round.

...

Step k. Repeat steps 1. and 2. until no more blocking pairs exist.

The idea of the randomized tâtonnement process is simple and intuitive. Starting from an

initial matching of partners, agents periodically encounter potential new partners at random. If

two agents encountering one another both prefer the other over their current partner (or over

being single if they are currently unmatched), each agent leaves their current partner and the

two form a new relationship together, leaving their former companions alone for the time being.

Repeating this process over and over, eventually there will be no two agents willing to leave their

current partners for one another. Furthermore, Roth and Vande Vate (1990) also show that if

the initial matching is the empty matching (all agents unmatched), every stable matching has

some positive probability of being arrived at as long as each blocking pair has some probability

of being selected at step 2 above.

An important assumption for this study is that blocking pairs are selected with uniform

probability at step 2. The reason for that specification is first and foremost to keep the process

as decentralized and unguided as possible. Any bias in favor of certain pairs being selected would

obviously skew the likelihood of certain stable outcomes. The goal here, on the other hand, is to

study pure tâttonement without any such direction. While some blocking pairs of agents might

4Of course, there are many other ways to rank matchings. See Boudreau and Knoblauch
(2011) for a collection of such measures that have been used in the literature. Accordingly,
the intention to extend the approach of this paper to account for other notions of welfare
in decentralized matching markets will be emphasized in the concluding section. For now it
is worth noting that the choice-count of a matching is a measurement closely related to the
welfare concept of envy used by Romero-Medina (2001) and Klaus (2009).

5The same process is also referred to as “random better response dynamics” in Ackermann
et al. (2008) and “unperturbed blocking dynamics” in Klaus, Klijn and Walzl (2010).
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be more likely than others to encounter one another in real-world matching markets, which pairs

are more or less likely to do so is a question beyond the scope of this study. Thus, allowing

each existing blocking pair an equal chance of being selected at step 2 is also an assumption

of simplicity and maximum entropy. Similar reasoning supports the choice of allowing blocking

pairs to be satisfied myopically rather than endowing agents with more complicated far-sighted

expectations.

3 Analysis and Results

A theoretical analysis of matching markets that proceed by randomized tâtonnement is difficult

due to the presence of cycles along the path to stability. Since the process is completely unguided

it is possible, indeed even likely, that an unstable matching will be upset by a sequence of blocking

pairs that leads directly back to that initial matching (see Boudreau, 2008, for examples). Due

to the possibility of cycling, and even more so due to the fact that cycles may repeat themselves

any number of times (though not indefinitely), the number of possible paths to stability is

intractably large even for fairly small markets with few individuals. This in turn makes an

analytical calculation of the probability of each stable outcome for even small markets quite

complex.6

Alternatively, the randomized tâtonnement process can simply be simulated for a given mar-

ket (n,Rm, Rw). By repeating the process – beginning from the empty matching and selecting

from the pool of blocking pairs with uniform probability at each step until arriving at one of

the market’s stable outcomes – and keeping track of which outcome is selected each time, it is

possible to obtain an estimate of the probability distribution of that market’s outcomes. To be

sure the estimate is reliable the number of trials can simply be increased to monitor for any

significant change.

Boudreau (2011) used that simulation approach to investigate whether or not the most effi-

cient stable matching was always the most likely outcome to occur. The intuition behind why

that might be the case is simple. If two agents are paired up but rank each other poorly, many

potential blocking pairs can exist since each has many partners they would prefer; if paired agents

rank each other highly there will be relatively fewer blocking pairs since there are fewer preferred

partners. Thus, if a matching market evolves based on the random satisfaction of blocking pairs

6After the submission of this paper an extremely helpful referee pointed out that there
are in fact methods to calculate explicit probabilities for the outcomes of the randomized
tâtonnement process, as well as tools for checking such calculations, both of which are detailed
in Biro and Norman (2011). Fortunately for this particular study, subsequent comparisons
have confirmed that the estimates arrived at by way of the simulation procedures outlined
below are accurate. Nevertheless, the efficiency Biro and Norman’s (2011) tools will be ex-
tremely helpful for future work on this topic, especially in allowing for the study of larger
markets, and as such the helpful pointer is gratefully acknowledged.
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it seems reasonable to suspect that stable matchings with lower choice-counts would be more

likely to result than those with higher choice-counts. Simulating an example market (Boudreau,

2011, example 1), however, proves that not to be the case.

The purpose of this paper is therefore to begin the process of identifying which factors make

a particular market more or less likely to have its most efficient matching also be the most

likely outcome of the randomized tâtonnement process. To accomplish that goal, the approach

is simple: generate matching markets of a fixed size with different preference rankings, simulate

the randomized tâtonnement process to determine whether or not the most efficient matching is

the most likely outcome, and then compare the characteristics of the various markets and their

outcomes.

The artificial matching markets that make up the evidence for this study were of size n = 6,

with preferences generated uniform-randomly. For each market, every agent was assigned n inde-

pendently drawn uniform-random numbers between 0 and 1 that served as their scores for each

of their n possible partners. Agents’ preferences were then ranked according to those randomly

drawn scores, with the lowest score being ranked first, the second-lowest score ranked second,

and so on. With preferences generated, the set of stable matchings was then determined by the

McVitie-Wilson (1971) algorithm. With the stable set determined, the randomized tâtonnement

process was then simulated 10,000 times (always beginning from the empty matching) to form

an estimate of the probability distribution of stable outcomes. A total of 20,000 such markets

were generated.

Of the 20,000 artificial markets, 12,020 of them had more than one stable outcome. Of those,

6,070, featured a less-efficient stable outcome – one that was not best in terms of choice-count

– as the most likely to occur. This type of inefficiency is therefore prevalent: out of a fairly

large random sample, the most efficient stable matching was not the most likely decentralized

outcome for almost a third of all markets, and roughly half of those with more than one stable

outcome.

The dependent variable of interest for this study, then, is whether or not the market attained

its most efficient stable outcome. Arbitrarily, a value of 1 is assigned to any market whose most

likely outcome is not the most efficient, 0 to a market whose most likely outcome is the most

efficient. Probit analysis can then be used to identify features which make this phenomenon

more or less likely. A positive sign for a marginal effect indicates that less-efficient outcomes are

more likely, while a negative sign indicates that efficient outcomes are more likely.

As per the logic above, the first considerations for explanatory variables involve the choice-

counts of matchings. The first two columns of table 1 present probit estimates of the impact

the choice-count of a matching market’s most likely matching (likelyCC)– the one to occur

as the result of randomized tâtonnement – and the choice-count of a market’s most efficient

stable matching minCC. Unsurprisingly, the higher the choice-count of a market’s most likely
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matching, the more likely it is that the outcome is less-efficient. More interesting, however, is

that the choice-count of a market’s most efficient stable matching does not have a significant

impact at all. This strengthens the results from Boudreau (2011), suggesting that the utilitarian

efficiency of the choice-count measure alone is no predictor of which outcome is most likely for

a decentralized matching market.

Table 1: Marginal Effects from Probit Estimation

likelyCC 0.0739∗∗∗

(0.0017)
minCC −0.0013

(0.0016)
#stable 0.3574∗∗∗ 0.3510∗∗∗

(0.0253) (0.0253)
#stable2 −0.0340∗∗∗ −0.0334∗∗∗

(0.0037) (0.0037)
ρ −4.4418∗∗∗ −2.3021∗∗∗

(0.7567) (0.7584)
ρ2 32.5134∗∗∗ 18.2647∗

(9.7168) (9.488)
Φ −0.0722

(0.0537)
LR 2269.10 0.64 618.52 43.11 629.00 1.81

Notes: n=12,020 for all estimates. Standard errors appear in parentheses.
∗∗∗,∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Another variable that seems like it should have significant a impact on a decentralized mar-

ket’s tendency toward efficiency is the number of stable outcomes the market possesses (#stable).

With more possibilities, it could mean that there is a greater chance the market could drift to

less-efficient stable matchings. The third and fifth columns of table 1 show that this intuition

is at least somewhat correct. The effect appears to be quadratic, however, perhaps suggesting

that with enough stable outcomes available there will be more and more that share the same,

most efficient, choice-count.

In addition to properties of the stable matchings themselves, another variable that should

have an impact is the degree of correlation in the market’s preferences. Since matching market

preferences are almost exclusively treated as ordinal, it is difficult to characterize them. One

way, however, is to measure the degree of shared agreement between agents on the same side of

the market. That is, the extent to which women (men) agree on which man (woman) is most

preferred, which is second-most preferred, and so on. Celik and Knoblauch (2007) developed a

general measure for this trait, which is described in detail in the appendix of this paper. Since
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the degrees of correlation among men’s and women’s preferences have symmetric effects on the

market, the product of the two measures is used to represent the degree of correlation in the

market as a whole (ρ).

As displayed in the fourth and fifth columns of table 1, correlation in the market’s pref-

erences seems to increase the likelihood of an efficient outcome. This makes sense since very

“un”correlated preferences can allow for very inefficient stable matchings. When all women have

a different first choice among men, for example, all women getting their first choice is stable even

if each woman’s first choice lists that woman as their last choice. Perfectly correlated preferences,

on the other hand, limit any debate over efficiency, since their will only be one stable outcome

and no matter what someone will get their first choice, someone will get their second choice, and

so on. Unexpected is that, like the number of stable matchings, correlation also seems to have

a quadratic effect, indicating that there may be some levels of high correlation that do allow for

less-efficient outcomes to be most likely.

In thinking about the effects of correlation, however, it is worthwhile to acknowledge that

the degree of preference correlation on either side of a matching market does have a relationship

with the number of stable matchings that will exist for that market. Thus, the two effects

suggested by columns 3-5 of table 1 certainly may be related. But one final result suggests that

the relationship between preference correlation and the number of stable matchings, on its own,

does not tell the whole story.

An additional way to characterize a matching market’s preferences is by their degree of

intercorrelation–that is, that degree to which agents across the two sides of the market agree in

terms of their rankings of one another. Consider, for example, a market in which each man’s

highest-ranked woman also ranks him highly, versus a market in which each man’s highest-ranked

woman ranks him poorly. Boudreau and Knoblauch (2010) define a measure for that trait (Φ),

described in detail in the appendix, and show that it is extremely influential in determining the

size of a market’s set of stable matchings. It is also closely related to the amount of correlation

in a market’s preferences. This can be seen by noting that if all men rank the same woman as

highest, she can not rank them all highly in return.

The last column of table 1 therefore examines the impact of preference intercorrelation on

the likelihood of an (in)efficient outcome being most likely. Quite interestingly, especially in

light of the significant effects of both preference correlation and the number of stable matchings,

intercorrelation does not itself have a significant effect. Indeed, although the estimates are not

reported due to space limitations, the lack of significance persists even when accounting for the

possibility of quadratic effects or when combining intercorrelation with various permutations

of the other variables in consideration. This lack of an effect is unexpected, but nevertheless

underscores the separate effects of the number of stable matchings and preference correlation.
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4 Conclusion

When a matching market proceeds toward stability by randomized tâtonnement, there are surely

many factors that determine whether or not the most likely outcome will be the most efficient

stable matching. This study was not an exhaustive search for all such factors. Rather, it simply

sought to identify some significant determinants in order to guide future research.

Since most matching markets, particularly labor and dating markets, remain decentralized, it

is important to understand what features determine their patterns. In particular, it is important

to understand which types of stable matchings different markets are most likely to drift toward

on their own. The results reported here, which are based on simulation experiments, confirm that

the choice-counts of stable matchings by themselves do not determine which outcome is most

likely. Certain characteristics of the market’s ordinal preferences, however, such as their degree

of correlation or the number of stable matchings they permit, do seem to influence whether or

not the matching with the lowest choice-count is the most likely to occur.

Future work will extend the ideas of this paper to further pursue the question of which

matching outcomes are most likely in decentralized settings. As noted earlier in the paper, the

notion of choice-count is only one of many possible ways to rank matchings. Other criteria may

also be critical in identifying which matchings are most likely. Recent evidence from laboratory

experiments (Echenique and Yariv, 2011; Pais, Pinter, and Veszteg, 2012), for example, suggests

that median matchings–those matchings which balance the interests of the two sides of the

market–may indeed be more likely to occur than others. Boudreau (2011) shows that, like

minimum choice-count matchings, median matchings are not always the most likely outcomes of

the randomized tâtonnement procedure. Nevertheless, work that considers the role of balance

between the interests of the two sides of the market, as well as other ordinal properties of

matchings, in determining the likelihood of decentralized matching outcomes is already under

way. Alternatively, cardinal aspects of matching markets such as the intensity of preferences are

very likely to also play a role their decentralized progression toward stability, and thus also merit

future consideration.

Ideally, in the future a more full categorization of decentralized matching market outcomes

will be possible; perhaps even a complete theoretical characterization. This paper is a step in

that direction of better understanding.
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Appendix: Measures of Correlation and Intercorrelation

The measure of preference correlation used in this paper comes directly from Celik and Knoblauch
(2007). As in their paper, Avei = 1

n

∑n
j=1 rwj (mi) is the average ranking of mi by all n women,

so the total measure of correlation in women’s preferences is

ρw =

∑n
i=1(Avei)k − n(n+1

2 )k∑n
i=1 i

k − n(n+1
2 )k

,

where k ≥ 2. All experiments here use k = 9, as recommended by Celik and Knoblauch
(2007). The measure of correlation in men’s preferences, ρm, is defined symmetrically. The
combined measure used for analysis here is simply the product of the correlation of the two
sides, ρ = ρm × ρw.

The measure of preference intercorrelation used here comes directly from Boudreau and
Knoblauch (2010). First, for each man i, square the difference between the rank mi gives wj

and the rank wj gives mi and add over all women:

φmi =

n∑
j=1

(rmi(wj)− rwj (mi))
2.

Then sum across the men and divide by n to get

φave =

∑n
i=1 φmi

n
.

Finally, the score is normalized by using the maximum possible φave score that is obtained when
no two men agree on the rank of any woman and each man is ranked last by his first-ranked
woman, second last by his second ranked woman, third last by his third ranked woman, etc.

Φ =

∑n
k=1(n+ 1− 2k)2 − φave∑n

k=1(n+ 1− 2k)2

Perfect positive intercorrelation therefore yields Φ = 1 and perfect negative intercorrelation
yields Φ = 0.
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Maximum Locally Stable Matchings

Christine T. Cheng∗ Eric McDermid†

Abstract

Motivated by the observation that most companies are more likely to consider job applicants
suggested by their employees than those who apply on their own, Arcaute and Vassilvitskii
modeled a job market that integrates social networks into stable matchings in an interesting
way. We call their model HR+SN because an instance of their model is an ordered pair (I,G)
where I is a typical instance of the Hospital/Residents problem (HR) and G is a graph that
describes the social network (SN) of the residents in I. A matching µ of hospitals and residents
has a local blocking pair (h, r) if (h, r) is a blocking pair of µ, and there is a resident r′ so that r′

is simultaneously an employee of h and a neighbor of r in G. Such a pair is likely to compromise
the matching because the participants have access to each other through r′: r can give her
resume to r′ who can then forward it to h. A locally stable matching is a matching with no local
blocking pairs.

This paper continues the study of locally stable matchings, focusing on those with maximum
cardinality. We refer to them as maximum locally stable matchings. First, we present families
of instances where finding a maximum locally stable matchings is computationally easy. For
one family of instances, every stable matching is a maximum locally stable matching. This
family includes the case when G is a complete graph. For the other family of instances, every
maximum cardinality matching is a maximum locally stable matching. This family includes the
case when G is an empty graph. Next, we provide a bound on how good a stable matching
approximates a maximum locally stable matching based on the size of a maximum matching of
Ḡ, the complement of G. An implication of this bound is that when G is almost a complete
graph, a stable matching is almost a maximum locally stable matching. We then consider
the case when G is almost an empty graph and show that finding a maximum locally stable
matchings is still easy. Nonetheless, finding a maximum locally stable matching is in general
computationally hard. In particular, we prove that finding a locally stable matching of a certain
size is NP-complete and that approximating the size of a maximum locally stable matching
within 21/19− δ is NP-hard.

1 Introduction

Motivated by the observation that most companies are more likely to consider job applicants sug-
gested by their employees than those who apply on their own, Arcaute and Vassilvitskii [2] modeled
a job market that integrates social networks into stable matchings. Formally, an instance of their
model consists of a set of firms F , a set of workers W , and a social network graph G of the workers.
Each member of F ∪W has a preference list that ranks members of the opposite group that it or
she finds acceptable in some linear order. Each firm f has a capacity qf , the maximum number of

∗Supported by NSF award CCF-0830678. Department of Computer Science, University of Wisconsin–Milwaukee.
Email: ccheng@uwm.edu
†21st Century Technologies. Email: emcdermid@21CT.com
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workers it can employ. A firm-worker pair is acceptable if they appear in each other’s preference
lists. A (many-to-one) matching µ of F and W is a set of acceptable firm-worker pairs where each
firm is part of at most qf pairs and each worker is part of at most one pair. It has a blocking pair
(f, w) if (i) (f, w) is an acceptable pair, (ii)f has an opening or f prefers w to its worst employee
under µ, and (iii) w is unemployed or w prefers f to her employer under µ. This blocking pair
is local if additionally f and w have access to each other – i.e., f has an employee that is also a
neighbor of w in G. In two-sided matching theory, a common goal is to find stable matchings, which
are matchings with no blocking pairs. In this model, the matchings of interest are locally stable
matchings, which are matchings with no local blocking pairs.

We emphasize that a local stable matching can contain blocking pairs, but these blocking pairs
will unlikely to compromise the matching. This may seem odd – if f still has an opening or prefers
w over its worst employee, why can’t f just make a job offer to w? If w is unemployed or prefers f
over her current employer, why can’t she just apply to f? In the job market context, we can think
of the preference lists of f and w as being constructed in an online fashion. In particular, w can
be included in f ’s list only after f has seen w’s resume. But for f to consider w, some employee
of f who is also a friend of w must forward w’s resume to f . Similarly, f can be included in w’s
list only after w has gained some reliable information about f . For this to happen, w must have a
friend who works at f . This friend of w that is also an employee of f is a point of contact between
f and w. The main assumption in this model is that a blocking pair of a matching cannot affect
the matching if the firm-worker pair has no points of contact.

The first part of Arcaute and Vassilvitskii’s paper [2] explores the combinatorial differences
between stable matchings and locally stable matchings. Among others, they show that there are
instances whose set of locally stable matchings do not form a distributive lattice under the standard
ordering relation used for stable matchings. There are also instances whose locally stable matchings
vastly outnumber its stable matchings. The second part of their paper examines the evolution of
the job market. They consider a decentralized version of Gale and Shapley’s algorithm and show
that for a specific case the algorithm converges to a locally stable matching under weak stochastic
conditions. They then go on to analyze the goodness of the resulting locally stable matching. The
recent work of Hoefer [9] expands on the latter line of inquiry significantly.

Our Contribution. In this paper, we continue the study of locally stable matchings, focusing
on those with maximum cardinality. We call them the maximum locally stable matchings. In
our opinion, not only are the locally stable matchings interesting in itself but they are also an
intriguing alternative to stable matchings. In some applications, requiring a matching to be stable
can be too strong a requirement. It can also unnecessarily limit the size of the matching. This
has led researchers to suggest other kinds of matchings that still take participants’ preferences into
consideration. They include popular matchings [1] and its many variants (e.g. [16], [14], [12], etc.),
rank maximal matchings [10], and “almost stable” maximum matchings – which are maximum
matchings with few blocking pairs [3]. In the job market context, locally stable matchings may not
only be larger than stable matchings, they may be just as robust since participants will unlikely
leave their assignments. Here are our main contributions:

• First, we present families of instances where finding a maximum locally stable matchings is
computationally easy. For one family of instances, every stable matching of the instance is a
maximum locally stable matching. This family includes the case when G, the social network of
the workers, is a complete graph. For the other family of instances, every maximum matching
of the firms and workers is a maximum locally stable matching. This family includes the case
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when G is an empty graph.

• Next, we show that when Ḡ, the complement of G, has a maximum matching of size r, the
size of a maximum locally stable matching of the instance is at most r more than the size
of a stable matching of the instance. Thus, when G is almost a complete graph, a stable
matching of the instance is a good approximation to its maximum locally stable matching.
On the other hand, we show that when G has a constant number of edges – i.e., G is almost
an empty graph – finding a maximum locally stable matching can still be done in polynomial
time.

• Finally, in spite of the results above, we show that finding a maximum locally stable matching
is computationally hard in general. In particular, we prove that finding a locally stable
matching of a certain size is NP-complete and that approximating the size of a maximum
locally stable matching within 21/19− δ is NP-hard.

The rest of the paper is organized as follows: In Section 2, we state facts and preliminary
results. We present the first two results in Section 3, and the last result in Section 4. We conclude
in Section 5.

2 Preliminaries

In the stable matchings literature, the problem of finding a stable matching in the Arcaute-
Vassilvitskii model sans the social network is often referred to as the Hospital/Residents problem
(HR). The firms correspond to the hospitals while the workers correspond to the residents. In their
seminal paper on stable matchings [5], Gale and Shapley presented an algorithm that finds a stable
matching for every HR instance I. It can be implemented in O(|I|) time where |I| is the size of
I. In general, I can have many stable matchings. Nonetheless, Gale and Sotomayor [6] showed
that every stable matching of I has the same size and matches exactly the same set of residents.
Throughout this paper, we shall assume that every HR instance we can consider has the property
that a resident r is in a hospital h’s preference list if and only if h is also in r’s preference list.

An example. In the following instance, let the hospitals be h1, h2, h3 whose capacities are 2, 2, 4
respectively. Let the set of residents be r1, r2, r3, r4, r5, r6, r7, r8. Here are their preference lists:

h1: r1 r2 r5 r6 r1: h1 h3 r5: h1

h2: r3 r4 r7 r8 r2: h1 h3 r6: h1

h3: r1 r2 r3 r4 r3: h2 h3 r7: h2

r4: h2 h3 r8: h2

It is not difficult to see that µ = {(h1, r1), (h1, r2), (h2, r3), (h2, r4)} is a stable matching of
the instance. It is, however, smaller than σ = {(h1, r5), (h1, r6), (h2, r7), (h2, r8), (h3, r1), (h3, r2),
(h3, r3), (h3, r4)}, which is a maximum matching of the instance.

For HR instance I, let B[I] denote the bipartite graph where the hospitals are the vertices on
one side, and the residents on the other side. A pair (h, r) is an edge if and only if they form an
acceptable pair. Thus, every matching of I is a subgraph of B[I]. Finding a maximum matching of
I can be done by solving a maximum flow problem with B[I] as the “base graph”: Create a source
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s and a directed edge from s to every hospital h, and set its capacity to qh. Direct all edges {h, r}
in B[I] from h to r and set its capacity to 1. Finally, create a sink t and a directed edge from
every resident r to t, and set its capacity to 1. There is a one-to-one correspondence between the
maximum flows of this network and the maximum matchings of B[I].

Let us suppose that all hospitals in I have capacity 1, and we wish to compare two of its
matchings µ and σ. In this case, it is useful to consider their symmetric difference µ

⊕
σ. In B[I],

it is made up of what are called alternating paths and cycles – i.e., paths and cycles whose edges
alternately belong to µ and σ. In cycles and even-length alternating paths, the number of µ-edges
and the number of σ-edges are the same; in odd-length alternating paths, the numbers differ by
1. Additionally, when |σ| > |µ|, there is at least one odd-length alternating path with one more
σ-edge than µ-edge. We shall call such a path a σ-alternating path.

When not all hospitals in I have capacity 1, we can transform I to another instance where
this is the case. Here is a standard trick [7]. Denote by I(1) the instance obtained from I by
doing the following: for each hospital hi of I with capacity qhi

, replace hi by qhi
clones of hi:

hi,1, hi,2, . . . , hi,qhi
. Let their capacities be 1, and let their preference lists be exactly the same as

that of hi. Then for each resident rj that has hi in her preference list, replace hi with the linear order
(hi,1, hi,2, . . . , hi,qhi

). By transforming I to I(1), the many-to-one matchings of I can now be viewed
as one-to-one matchings of I(1). Let µ be a matching of I. Create the corresponding matching
µ(1) of I(1) as follows: when hi is matched to residents rj1 , rj2 , . . . , rjk

in µ and these residents are
arranged according to its preference, let hi,1, hi,2, . . . , hi,k be matched to rj1 , rj2 , . . . , rjk

respectively
in µ(1). Notice that µ and µ(1) have the same size. Moreover, it is easy to verify that this mapping
is a bijection from the set of stable matchings of I to the set of stable matchings of I(1). Now,
suppose we want to compare µ with another matching σ of I. The task becomes equivalent to
comparing µ(1) and σ(1) in I(1), and the symmetric difference technique described in the previous
paragraph can now be applied.

Proposition 1. In the HR instance I, let µ be a stable matching and σ be a maximum matching
of I. Then |µ| ≤ |σ| ≤ 2|µ|.

Proof. By definition, |µ| ≤ |σ|. Now, construct I(1) and the matchings µ(1) and σ(1) from I, µ and
σ respectively. Since |µ| = |µ(1)| and |σ| = |σ(1)|, |µ(1)| ≤ |σ(1)|. This means that in µ(1)

⊕
σ(1)

there is a σ(1)-alternating path. But there cannot be a σ(1)-alternating path which simply consists
of one edge (h, r) from σ(1) because this means that h and r are acceptable to each other in I(1)

but are unmatched in µ(1) – i.e., µ(1) is not a stable matching of I(1) since (h, r) is a blocking pair.
This contradicts the fact that µ(1) was constructed from µ, a stable matching of I. Thus, in every
σ(1)-alternating path, the ratio of edges belonging to σ(1) and to those belonging to µ(1) is at most
2:1. Hence, |σ(1)| ≤ 2|µ(1)|. It follows that |σ| ≤ 2|µ|.

The previous example shows that the bound in Proposition 1 is tight.

2.1 HR+SN and max-HR+SN

Following the above terminology, we shall call the problem of finding a locally stable matching
and a maximum locally stable matching in the Arcaute-Vassilvitskii’s model HR+SN and max-
HR+SN respectively, where SN stands for social network. We will, however, revert back to the
original context and use firms in place of hospitals and workers in place of residents. An instance of
HR+SN is an ordered pair (I,G) where I is an HR instance and G is a social network of the workers.
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Example continued. In the previous example, suppose G consists of two cliques, one containing
r1, r2, r3, r4 and another containing r5, r6, r7, r8. Then σ is a maximum locally stable matching of
(I,G). It has several blocking pairs – (h1, r1), (h1, r2), (h2, r3), (h2, r4) – but none of the pairs have
a point of contact.

Proposition 2. If µ is a locally stable matching in the HR+SN instance (I,G), then µ(1) is a
locally stable matching in the HR+SN instance (I(1), G).

Proof. Assume µ(1) is not a locally stable matching of (I(1), G) so it has a local blocking pair
(fik, wj). Thus, fik and wj has a point of contact, say w′, who is also the only employee of fik in
µ(1). If wj is unmatched or is employed by a firm that is not a clone of fi in µ(1), then (fi, wj) is
a local blocking pair of µ with w′ as a point of contact – a contradiction. If wj is employed by a
clone of fi in µ(1), say fik′ , then the fact that wj prefers fik over fik′ means that k < k′. On the
other hand, fik prefers wj over its only employee w′ means that fi prefers wj over w′. But this
contradicts the way µ(1) is constructed because fi should prefer the worker matched to fik over the
worker matched to fik′ . Hence, we have shown that all cases lead to a contradiction. Therefore,
µ(1) is a locally stable matching of (I(1), G).

We note though that the converse of Proposition 2 is not always true. That is, a matching may
be locally stable in (I(1), G) but its corresponding matching in (I,G) is not locally stable. In the
next proposition, we provide a bound similar to Proposition 1.

Proposition 3. In the HR+SN instance (I,G), let µ be a stable matching and µ̂ be a maximum
locally stable matching. Then |µ| ≤ |µ̂| ≤ 2|µ|.

Proof. Let σ be a maximum matching of I. By definition, |µ| ≤ |µ̂| ≤ |σ|. According to Proposi-
tion 1, |σ| ≤ 2|µ|. Hence, |µ̂| ≤ 2|µ|.

When we appended our running example with the social network consisting of a clique containing
r1, r2, r3, r4 and another clique containing r5, r6, r7, r8, σ is a maximum locally stable matching. Its
size is twice that of µ. This shows that the bound of Proposition 3 is tight. The next proposition
describes the interaction between the preference lists in I and the edges in G.

Proposition 4. Let (I,G) be an HR instance. Suppose two workers w1 and w2 do not have a
firm in common in their preference list or, equivalently, there is no firm that has w1 and w2 in its
preference list. Let e = {w1, w2}. Then (I,G− e) and (I,G+ e) have the same set of locally stable
matchings as (I,G).

Proof. Without loss of generality, assume e is an edge of G. It is easy to verify that when G′

is a subgraph of G, every locally stable matching of (I,G) is also a locally stable matching of
(I,G′). Thus, to prove the proposition, we simply have to show that every locally stable matching
of (I,G− e) is also a locally stable matching of (I,G).

Suppose µ is a locally stable matching of (I,G−e) but has a local blocking pair (f, w) in (I,G).
Let f and w’s point of contact be w′. Hence, both w and w′ have f in their preference lists; that
is, {w,w′} 6= {w1, w2}. Thus, the edge {w,w′} is in G − e so that (f, w) is also a local blocking
pair of µ in (I,G− e), a contradiction. It follows that µ has no blocking pairs in (I,G).
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In Section 4, we shall consider max-HR+SN. Given an HR+SN instance (I,G), let A be an
algorithm that outputs a locally stable matching of (I,G), which we denote as A(I,G). Then A is an
f(N)-approximation algorithm of max-HR+SN if for all instances (I,G) of sizeN , |µ∗(I,G)|/|A(I,G)| ≤
f(N) where µ∗(I,G) is a maximum locally stable matching of (I,G). Thus, according to Proposition
3, the Gale-Shapley algorithm is a 2-approximation algorithm of max-HR+SN. The problem max-
HR+SN is NP-hard to approximate within f(N) if the existence of an efficient f(N)-approximation
algorithm implies P=NP.

3 The easy cases

In this section, we present a family of HR+SN instances where finding a maximum locally stable
matching is easy.

Theorem 1. Let (I,G) be an HR+SN instance. Suppose that whenever two workers have a firm
in common in their preference lists, the two workers also share an edge in G. Then every stable
matching of I is a maximum locally stable matching of (I,G). Consequently, when G is the complete
graph, every stable matching of I is a maximum locally stable matching of (I,G).

Proof. For now, assume that all firms in I have capacity 1. Suppose (I,G) has a locally stable
matching σ that is larger than the stable matchings of I. Let µ be one of these stable matchings.
Then σ

⊕
µ has a σ-alternating path of the form f1, w1, f2, w2, . . . , fk, wk such that (fi, wi) ∈ σ for

i = 1, . . . , k and (fi+1, wi) ∈ µ for i = 1, . . . , k − 1. Since f1 is unmatched in µ, w1 must prefer f2

over f1; otherwise, (f1, w1) is a blocking pair of µ. Now w1 and w2 both have f2 in their preference
lists so they share an edge in G. It must be the case then that f2 prefers w2 over w1; otherwise,
(f2, w1) is a local blocking pair of σ. Continuing in this fashion, we have that for i = 1, . . . , k − 1,
wi prefers fi+1 over fi because µ is a stable matching of I while fi+1 prefers wi+1 over wi because
wi and wi+1 are adjacent in G and σ is a locally stable matching of (I,G). Consequently, fk must
prefer wk over wk−1. But wk is unmatched in µ so this implies that (fk, wk) is a blocking pair of µ
– a contradiction. Hence, σ cannot exist, and µ is a maximum locally stable matching of (I,G).

So suppose some firms in I have capacity greater than 1. Construct the HR+SN instance
(I(1), G) from (I,G). Notice that the property “whenever two workers have a firm in common in
their preference lists, the two workers also share an edge in G” is preserved in (I(1), G). Let σ be a
locally stable matching of (I,G), and let µ be a stable matching of I. Consider their corresponding
matchings σ(1) and µ(1). From Proposition 2, σ(1) is also a locally stable matching of (I(1), G). We
also know that µ(1) is a stable matching of I(1). If |σ| > |µ|, |σ(1)| > |µ(1)|. But all firms in I(1) have
capacity 1, and according to the previous paragraph µ(1) is a maximum locally stable matching of
(I(1), G). Hence, |σ| ≤ |µ|, and µ is a maximum locally stable matching of (I,G).

The next theorem provides a bound that is different from the one presented in Proposition 3.
It shows that when G is almost a complete graph, a stable matching of I and a maximum locally
stable matching of (I,G) will almost have the same size.

Theorem 2. Let (I,G) be an HR+SN instance. Suppose that the largest matching in Ḡ, the
complement of G, is r. Let µ̂ be a maximum locally stable matching of (I,G) and µ be a stable
matching of I. Then |µ̂| ≤ |µ|+ r.

Proof. Once again, let us begin the proof by assuming that all firms in I have capacity 1. First,
notice that |µ̂|−|µ| is bounded above by the number of µ̂-alternating paths in µ̂

⊕
µ. Furthermore,
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the µ̂-alternating paths are vertex-disjoint. Now, in the proof of Theorem 1, we argued that
when f1, w1, f2, w2, . . . , fk, wk forms a µ̂-alternating path and w1, w2, . . . , wk is a path in G, a
contradiction arises. Thus, at least one of the edges w1w2, w2w3, . . . , wk−1wk must be missing
from G and therefore present in Ḡ. If µ̂

⊕
µ has x µ̂-alternating paths, Ḡ has at least x pairwise

vertex-disjoint edges. Since x ≤ r, |µ̂| − |µ| ≤ r.
Now suppose some firms in I have capacity greater than 1. Again, construct the HR+SN

instance (I(1), G) from (I,G). Since µ̂ is a maximum locally stable matching of (I,G), µ̂(1) is
a locally stable matching of (I(1), G), but it may not be the largest such matching. Let τ be a
maximum locally stable matching of (I(1), G). Thus, |µ̂| − |µ| = |µ̂(1)| − |µ(1)| ≤ |τ | − |µ(1)|. From
the previous paragraph, the latter is bounded by r. Hence, |µ̂| − |µ| ≤ r.

We now consider the opposite case of Theorem 1.

Theorem 3. Let (I,G) be an HR+SN instance. Suppose that whenever two workers have a firm in
common in their preference lists, the two workers do not share an edge in G. Then the matchings
of I are exactly the locally stable matchings of (I,G). Hence, every maximum matching of I
is a maximum locally stable matching of (I,G). Consequently, when G is the empty graph, the
matchings of I are exactly the locally stable matchings of (I,G), and every maximum matching of
I is a maximum locally stable matching of (I,G).

Proof. Let µ be an arbitrary matching of I. Suppose µ is not stable and contains a blocking pair
(f, w). In order for (f, w) to be a local blocking pair, f and w must have a point of contact w′; i.e.,
both w and w′ have f in their preference lists, and both are neighbors in G. But by our assumption
on G, this cannot be the case. Hence, all blocking pairs of µ are not local so µ is a locally stable
matching. Thus, every matching of I is a locally stable matching of (I,G). Since every locally
stable matching of (I,G) is also a matching of I, it follows that the matchings of I are exactly the
locally stable matchings of (I,G). The rest of the theorem follows.

In this next theorem, we consider the case when G is almost an empty graph.

Theorem 4. Suppose that in the HR+SN instance (I,G), G has a constant number of edges. Then
a maximum locally stable matching of (I,G) can be found in time polynomial in |I|.

Proof. Let W1 ⊆ W be the smallest set of workers whose induced subgraph G1 in G contains all
the r edges of G. Let W2 = W −W1, and let G2 be the subgraph induced by W2, which in this
case is an empty graph. Thus, G = G1 ∪G2. Furthermore, every matching µ of I can be expressed
as µ1 ∪ µ2 where each µi is a matching involving the workers in Wi, for i = 1, 2. Let I1 be the HR
instance derived from I by restricting the set of workers to W1. With some abuse in notation, let
I −µ1 be the HR instance obtained from I by removing the workers matched in µ1 and decreasing
the capacities of the firms according to the number of matches they received in µ1. Thus, µ1 is a
matching of I1 and µ2 is a matching of I − µ1. Conversely, if µ1 is a matching of I1 and µ2 is a
matching of I − µ1, putting them together as µ = µ1 ∪ µ2 results in a matching of I.

It is also straightforward to verify that when µ is a locally stable matching of (I,G), µ1 and µ2

are locally stable matchings of (I1, G1) and (I−µ1, G2) respectively. Let us now argue the converse.
Suppose µ1 and µ2 are locally stable matchings of (I1, G1) and (I − µ1, G2) respectively but µ has
a local blocking pair (f, w) whose point of contact is w1. Thus, in µ, f has an opening or prefers w
over its worst employee w2, and that w is either unmatched or prefers f over her current employer.
Furthermore, since G2 is an empty graph, w and w1 must both be in W1 and neighbors in G1. If
f has an opening in µ or w2 is in W2, then f has an opening after the matching µ1 so (f, w) is a
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local blocking pair of µ1. On the other hand, if w2 is in W1, then f prefers w to its worst employee
w2 in µ1 so that (f, w) is again a local blocking pair of µ1. All cases lead to a contradiction. Thus,
µ must be a locally stable matching of (I,G).

To find a maximum locally stable matching of (I,G), we do what is essentially a brute force
method. We consider all possible matchings of I1. For each such matching µ1, we check to see if
µ1 is a locally stable matching of (I1, G1). If it is, we construct I1 − µ1 and then find a maximum
matching µ2 of the instance. According to Theorem 3, µ2 is a maximum locally stable matching
of (I1 − µ1, G2) since G2 is an empty graph. If µ = µ1 ∪ µ2 is currently the largest locally stable
matching of (I,G) we have seen, we store µ; otherwise, we move on to the next matching of I1.

There are at most 2r workers in W1. Each one is either unmatched or employed by one of the
|F | firms. Thus, the number of possible matchings of I1 is O((|F |+ 1)2r). Verifying if a matching
µ1 of I1 is locally stable in (I1, G1), constructing I1 − µ1, and finding a maximum matching of
the instance can all be done in O(poly(|F |, |W |)) time. Hence, finding a maximum locally stable
matching of (I,G) takes O((|F | + 1)2rpoly(|F |, |W |)) time, which is polynomial in |F | and |W |
when r is a constant.

4 Hardness results

An SMI (Stable Marriage with Incomplete Lists) instance is just like an HR instance only all the
firms have capacity 1. Hence, all of its stable matchings have the same size. An SMTI (Stable
Marriage with Ties and Incomplete Lists) instance is an SMI instance except that the participants’
preference lists are allowed to contain ties. For this problem, a pair (f, w) is a blocking pair of
matching µ if (i) (f, w) is an acceptable pair, (ii)f has an opening or f strictly prefers w to its only
employee under µ, and (iii) w is unemployed or w strictly prefers f to her employer under µ. Once
again, a matching is (weakly) stable if it has no blocking pairs. Unlike SMI instances, the stable
matchings of an SMTI instance can have different sizes. In this section, we will show that certain
kinds of SMTI instances can be encoded as HR+SN instances. This will allow us to translate
hardness results known for max-SMTI, the problem of computing a maximum (cardinality) stable
matching of an SMTI instance, to max-HR+SN.

Let I be an SMTI instance. Suppose the ties in the preference lists of I are broken arbitrarily
to create the SMI instance I ′. Clearly, every stable matching of I ′ is also a stable matching of I.
The converse, however, is not true. Let us say that the ties in I are consistent if for every pair of
participants q and q′, whenever q and q′ appear in the preference lists of p and p′, q and q′ are in
a tie in the preference list of p if and only if they are also in a tie in the preference list of p′. In
the next theorem, we show that when only the firms’ preference lists contain ties and these ties are
consistent, then the stable matchings of I can be retrieved from I ′ provided we consider the locally
stable matchings of (I ′, G) instead where G is constructed appropriately.

Theorem 5. Let I be an SMTI instance where only the firms’ preference lists contain ties, and
the ties are consistent. Let I ′ be the SMI instance obtained by breaking the ties in the preference
lists of I arbitrarily. Let G be a graph such that whenever two workers w and w′ appear together
in some firm’s preference list in I, w and w′ are adjacent if and only if they are not in a tie. Then
the following is true:
(i) Every stable matching of I is also a locally stable matching of (I ′, G).
(ii) Every locally stable matching µ′ of (I ′, G) can be transformed into a stable matching µ of I
such that |µ| ≥ |µ′| in time polynomial in the size of I. Consequently, every maximum locally stable
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matching of (I ′, G) can be transformed into a maximum stable matching of I of the same size in
time polynomial in |I|.

Proof. Let µ be a stable matching of I. Suppose µ is not a locally stable matching of (I ′, G), and
(f, w) is one of its local blocking pairs with w′ as a point of contact. Since f has capacity 1, w′ is
the only employee of f and f prefers w over w′. In order for (f, w) to not be a blocking pair of µ
in I, w and w′ must be in a tie in f ’s preference list in I. But this cannot be the case – w and w′

are adjacent in G and ties are consistent in I. Hence, µ cannot have a local blocking pair in (I ′, G)
and must therefore be a locally stable matching of the instance.

For (ii), suppose µ′ is a locally stable matching of (I ′, G). Let (f, w) be a blocking pair of µ′

in I. Without loss of generality, assume that w is the worker that f prefers the most among those
that form a blocking pair with f . First, we note that f cannot be matched in µ′. Otherwise, if it is
matched to some worker w1 then f must strictly prefer w over w1 so that w and w1 are adjacent in G.
In (I ′, G), (f, w) has w1 as a point of contact, implying that µ′ cannot be a locally stable matching
because (f, w) is a local blocking pair. Since this is a contradiction, f has to be unmatched in µ′.
Next, if w is unmatched in µ′, let µ′′ = µ′∪{(f, w)}; otherwise, let µ′′ = µ′−{(µ′(w), w)}∪{(f, w)}.
If µ′′ has a local blocking pair, it will involve either f or w. By our choice of w, no worker will form
a local blocking pair with f . If (f1, w) is a local blocking pair of µ′′, then (f1, w) must be a local
blocking pair of µ′ too – a contradiction. Hence, µ′′ is still a locally stable matching of (I ′, G).

What we have shown is that as long as a locally stable matching of (I ′, G) has a blocking pair
with respect to I, the matching can be modified so that (i) its size stays the same or is larger by
1, and (ii) the modified matching is still a locally stable matching of (I ′, G) where one worker’s
employer improved while everyone else’s stayed the same. If we keep applying this modification,
at some point there will be no more worker whose employer can be improved. The locally stable
matching of (I ′, G) under consideration is now a stable matching of I.

Checking whether µ′ is a stable matching of I, finding a blocking pair of µ′ if it is not, and
finding a worker that f prefers the most among those that form a blocking pair with f can be
done in time polynomial in the size of I. Since the number of modifications cannot be more than
|F |× |W |, it follows that starting at a locally stable matching µ′ of (I ′, G), we can arrive at a stable
matching µ of I such that |µ| ≥ |µ′| in time polynomial in the size of I.

Finally, we note from (i) that a maximum locally stable matching of (I ′, G) is at least as large
as a maximum stable matching of I. Hence, if a maximum locally stable matching of (I ′, G) is also
a stable matching of I, it must be a maximum stable matching of I. Our argument in the previous
paragraphs show that the last part of (ii) is true.

In the statement of Theorem 5, we simply described what edges should be in G: whenever two
workers w and w′ appear together in some firm’s preference list in I, w and w′ are adjacent if and
only if they are not in a tie. That is, we are ambivalent about edges formed by workers that do
not appear together in a firm’s preference list in I since according to Proposition 4, the absence or
presence of these edges in G have no effect on the set of locally stable matchings of (I,G).

Consistent ties arise naturally when firms and/or workers derive their preference lists from a
master list [11]. A master list of workers LW is an ordering of all the workers which may or may
not contain ties. Each firm’s preference list contains all the workers acceptable to it and ranked in
accordance with the master list. Thus, when w and w′ is part of the preference list of a firm f ,
they are in a tie in f ’s list if and only if they are in a tie in LW . A master list of firms LF is defined
similarly, and each worker’s preference list is obtained in the same way. Let SMTI-2ML denote the
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SMTI problem where both groups of participants derived their preference lists from a master list.
The following result is known about SMTI -2ML.

Fact 1. (Irving et al. [11]) Suppose that in the SMTI-2ML instance I, there are n firms and n
workers. Determining if I has a stable matching of size n is NP-complete even if the ties occur in
one master list only. The result holds even when (i) there is only one tie in that master list or (ii)
all the ties are of length 2.

We now translate this result to HR+SN.

Theorem 6. Suppose that in the HR+SN instance (I,G), there are n firms and n workers, and
each firm has capacity 1. Determining if I has a locally stable matching of size n is NP-complete.
The result holds even when G ∼= Kn −Kn′ where n′ < n or G ∼= Kn − F where F is a matching in
Kn.

Proof. Let I ′ be an SMTI-2ML instance with n firms and n workers, and the ties occur in one
master list only. Without loss of generality, assume that it is the firms’ master list of workers
that contains the ties. Create the HR+SN instance (I ′′, G) according to Theorem 5. If there is
an efficient algorithm for determining if (I ′′, G) has a locally stable matching of size n, which is
clearly a maximum locally stable matching of (I ′′, G), then there is also an efficient algorithm for
determining if I ′ has a stable matching of size n. But Fact 1 states that the latter is an NP-
complete problem. It follows that determining if I ′′ has a locally stable matching of size n is also
NP-complete. The form of G is based on Proposition 4, Fact 1 and Theorem 5.

Next, we argue that max-HR+SN is NP-hard to approximate within some δ0 by appealing to
the details of the following result of Halldórsson et al. [8] with regards to approximating max-SMTI.

Fact 2. (Halldórsson et al. [8]) It is NP-hard to approximate max-SMTI within a factor of 21/19−δ
for any constant δ > 0.

Theorem 7. It is NP-hard to approximate max-HR+SN within a factor of 21/19 − δ for any
constant δ > 0.

Proof. To prove Fact 2, Halldórsson et al. [8] relied on a result of Dinur and Safra [4] about
approximating a minimum vertex cover of a graph. Given a graph H = (V,E), we now describe
how they constructed the SMTI instance IH . Note that we shall use firms in place of men and
workers in place of women. For each vertex vi of H, create three firms vA

i , v
B
i , v

C
i , and three workers

va
i , v

a
i , v

c
i . Thus, there are a total of 3|V | firms and 3|V | workers. Suppose vi is adjacent to d vertices

vi1 , vi2 , . . . , vid . Here are the preference lists of the firms and workers corresponding to vi:

vA
i : va

i va
i : vB

i vC
i1
· · · vC

id
vA
i

vB
i : (va

i vb
i ) vb

i : vB
i vC

i

vC
i : vb

i va
i1
· · · va

id
vc
i vc

i : vC
i

Clearly, IH can be constructed from H in time polynomial in the size of H. Also, notice that
the ties in IH are consistent since va

i and vb
i appear together in vB

i ’s preference list only. Using the
reduction in Theorem 5, let (I ′H , G) be the HR+SN instance that corresponds to IH . Let s+(IH)
and s+(I ′H , G) denote the sizes of a maximum stable matching in IH and a maximum locally stable
matching in (I ′H , G) respectively. According to Theorem 5, s+(IH) = s+(I ′H , G). Let β−(H)
denote the size of a minimum vertex cover of H. They showed that s+(IH) = 3|V | − β−(H). Since
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β−(H) is NP-hard to approximate, it follows that s+(IH) is also NP-hard to approximate. Since
s+(IH) = s+(I ′H , G), and HR+SN instance (I ′H , G) can be constructed from IH in polynomial time,
we also have that s+(I ′H , G) is NP-hard to approximate. We refer readers to [8] for the derivation
of the factor 21/19− δ.

5 Final Remarks

Theorem 7 provides a lower bound while Proposition 3 provides an upper bound to the factor
of the best approximation algorithm for max-HR+SN. Can this gap be narrowed? We suspect
that the answer is yes since the source of our hardness results, max-SMTI, has a number of 3/2-
approximation algorithms [15, 13, 17]. An important strategy in these algorithms is to come up
with a stable matching µ so that if µ∗ is a maximum stable matching of the instance, there is no
length-3 µ∗-alternating path in µ∗

⊕
µ. In other words, in all µ∗-alternating path in µ∗

⊕
µ, the

ratio of the number of µ∗-edges to the number of µ-edges is at most 3 : 2. We end with the theorem
below which shows that for some HR+SN instances, choosing µ to be equal to a stable matching
of the instance yields such a result.

Theorem 8. In the HR+SN instance (I,G), let W ′ be the set of workers that get matched in every
stable matching of I. Suppose that in graph G, whenever w1 ∈ W ′ and w2 ∈ W −W ′ have a firm
in common in their preference lists, w1 and w2 are adjacent in G. Let µ be a stable matching of I
and µ̂ be a maximum locally stable matching of (I,G). Then |µ̂| ≤ 3

2 |µ|.

Proof. Recall the proof of Theorem 1. For now, assume all firms in I have capacity 1. Consider
µ̂

⊕
µ. Suppose it has a length-3 µ̂-alternating path: f1, w1, f2, w2. This means that f1 is un-

matched in µ so w1 must prefer f2 over f1. Similarly, w2 is unmatched in µ so f2 must prefer w1

over w2. Thus, (f2, w1) is a blocking pair of µ̂. Furthermore, w1 ∈ W1 and w2 ∈ W −W1 are
adjacent in G so w2 is a point of contact between f2 and w1 and (f2, w1) is a local blocking pair of
µ̂ – a contradiction. It follows that µ̂

⊕
µ has no length-3 µ̂-alternating paths.

Now, suppose some firms in I have capacity greater than 1. Once more, construct (I(1), G) from
(I,G). Let τ be a maximum locally stable matching of (I(1), G). From the previous paragraph,
|τ | ≤ 3

2 |µ
(1)|. Thus, |µ̂|/|µ| = |µ̂(1)|/|µ(1)| ≤ |τ |/|µ(1)| ≤ 3/2.
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Abstract

In this paper, the notion of stability is extended to network flows over time. As a
useful device in our proofs, we present an elegant preflow-push variant of the Gale-Shapley
algorithm that operates directly on the given network and computes stable flows in pseudo-
polynomial time both in the static flow and the flow over time case. We show periodical
properties of stable flows over time on networks with infinite time horizon. Finally, we
discuss the influence of storage at vertices, with different results depending on the priority
of the corresponding holdover edges.

1 Introduction
In the stable marriage problem every vertex of an undirected bipartite graph G represents
either a woman or a man. Their sympathy for each person of the opposite gender is expressed
by their preference lists: the more beloved person has the higher rank. A marriage scheme is
a matching M on G. We say that such a scheme is stable, if there is no pair of participants
willing to leave their partners in order to marry each other. More formally: an edge uv blocks
M , if u and v both are unpaired or prefer each other to their partners in M . A matching M
is stable, if there is no blocking edge in G. Gale and Shapley [7] were the first to state that a
stable matching always exists. Their well-known deferred-acceptance algorithm finds a stable
marriage in strongly polynomial time.

One of the most advanced extensions of the stable marriage problem is the stable allocation
problem. It was introduced by Baïou and Balinski [1] in 2002. Here we talk about jobs and
machines instead of men and women. Edges have capacity and participants have quota on their
matched edges. This quota stands for the time a job needs to get done, and the time a machine
is able to work in total. Edges are used for assigning jobs to machines such that none of the
machines spends more time on a job than the edge capacity allows them.

The goal is to find a feasible set of contracts such that no machine-job pair exists where
both could improve their states by breaking the scheme. Edge e is blocking, if it is unsaturated
and neither end vertex of e could fill up its quota with at least as good edges as e. An allocation
x is stable, if none of the edges of G is blocking. Baïou and Balinski [1] give two algorithms
to solve the problem: while their augmenting path algorithm runs in strongly polynomial time,
the refined Gale-Shapley algorithm is more efficient in simple cases, e. g., on instances where all
jobs get one of their best choices it only needs sublinear time. Dean et al. [2, 3] succeeded to
speed up the first method relying on sophisticated data structures such as dynamic trees. They
also extended the second one to the case of irrational data.

Stable allocations have been further generalized to stable flows by Ostrovsky [9] and Fleiner [4].
Fleiner also gave a constructive proof for the existence of a stable flow in every network by solv-
ing a stable allocation problem in a modified network. In an instance of stable flow, special
∗TU Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany,
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vertices are designated as terminals, and each non-terminal vertex has a preference list of its
incoming and outgoing edges that specifies from which edges it prefers to receive flow and which
edges it prefers to send flow along. Stable flows are well-suited for modeling real-world market
situations, as they capture the different trading preferences of vendors and customers.

We extend this model to the setting of flows over time. Flows over time were introduced by
Ford and Fulkerson [5, 6]. In addition to the stable flow instance we have transit times on the
edges and a time horizon specifying the end of the process. We prove existence of stable flows
over time and, moreover, show that, for the case of an infinite (or sufficiently large) time horizon,
there is a stable flow over time which converges to a static stable flow. By introducing time
to the stable flow setting, one can achieve a considerably more realistic and more interesting
description of real market situations. With flows over time and transit times on the edges we
can model transportation problems or illustrate distances amongst the vendors.

Structure of the paper In Section 2, we introduce the stable flow problem and present
an elegant version of the Gale-Shapley algorithm that operates directly on the given network.
We also give a simple proof of its correctness. In Section 3, we present the stable flow over
time problem and show existence of stable flows even in the case of networks with infinite time
horizon. We conclude the section by analyzing how different variations of storage at vertices
can influence the stability of flows in a network.

2 Stable flows
Although most bipartite matching problems can be easily interpreted as network flow problems,
stability was defined for flows only in 2008 by Ostrovsky [9]. He proved the existence and
some basic properties of stable flows. Two years later, Fleiner [4] came up with a generalized
setting and further results. In this paper, we use this general setting and build upon Fleiner’s
remarkable achievements.

2.1 Basic notions

We consider a network (D, c), where D is a directed graph whose vertices V (D) are partitioned
into a set of terminals S ⊆ V (D) and non-terminal vertices V (D) \ S. Moreover, there is a
capacity function c : E(D) → R>0 on the edges. The digraph D might contain multiple edges
as well as loops. This concession forces us to modify slightly the structure of preference lists:
each vertex v ∈ V (D) sets up a strictly ordered list of the neighboring edges instead of the
neighboring vertices. For convenience, we consider the orderings on incoming and outgoing
edges as two separate lists. The set of these lists are denoted by O. Vertex v prefers uv to wv,
if uv has a lower number on v’s preference list than vw. In this case we say that uv dominates
wv at v and denote it by uv <v wv. The same notation is used for outgoing edges.

Definition 2.1 (flow). A flow f in network (D, c) is a function f : E(D)→ R≥0 such that the
following properties hold:

1. f(uv) ≤ c(uv) for all edges uv ∈ E(D);

2.
∑

uv∈E(D)
f(uv) =

∑
vw∈E(D)

f(vw) for all vertices v ∈ V (D) \ S.

We would like to emphasize that we do not distinguish sources and sinks in S, their role is
the same: they are the vertices in D that do not have to obey the Kirchhoff law.

Definition 2.2 (stable flow). A blocking walk of flow f is a directed walkW = (v1, e1, ..., ek−1, vk)
such that all of the following properties hold:
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1. each edge ei, i = 1, ..., k − 1, is unsaturated;

2. v1 ∈ S or there is an edge e′ = v1u such that f(e′) > 0 and e1 <v1 e
′;

3. vk ∈ S or there is an edge e′′ = wvk such that f(e′′) > 0 and ek−1 <vk
e′′.

A network flow is stable, if there is no blocking walk in the graph.
The network can be seen as a market situation where the vertices are the traders and the

edges connecting them are possible deals. All participants rank their partners for arbitrary
reasons: e. g., quality, price or location. These rankings are the preference lists of our instance.
Notice that edges do not necessarily correspond to deals involving the same product and there
may be cycles on the graph, even of length two. An unsaturated walk is a possible deal between
vendors v1 and vk. If they are suppliers or consumers (terminals) or can improve their situation
using the unsaturated walk, then they will agree to send some flow along it and break the
existing scheme.

It was shown by Fleiner [4] that each instance I of the stable flow problem can be converted
into an equivalent instance I ′ of the stable allocation problem such that every stable flow
corresponds to a stable allocation and vice versa. Since there always exists a stable allocation
[1], the existence of stable flows directly follows from the equivalence of stability on I and I ′.
The construction shows that stable flows can be found in polynomial time.
Theorem 2.3 (Fleiner, 2010 [4]). There is a stable flow on every instance (D, c,O).
Theorem 2.4 (Fleiner, 2010 [4]). For a fixed instance, the value of every stable flow is the
same. Moreover, each edge incident to a terminal vertex has the same value in every stable
flow.

The stable flow problem can be seen as a generalization of the stable allocation problem.
We introduce two terminal vertices to G and connect s with all vertices representing jobs, and t
with all vertices representing a machine. The new edges get the quota of their non-terminal end
vertex as capacity. Now we orient all edges from s to the jobs, from the jobs to the machines
and from the machines to t in order to get a directed network. On this network all stable flows
induce a stable allocation on the original graph and vice versa.

2.2 Algorithms to find stable flows

The stable allocation problem can be solved in polynomial time [1, 3]. As mentioned in the
introduction, the augmenting path algorithm is not always the most efficient way to find stable
allocations: the Gale-Shapley algorithm terminates faster in some cases. It can be run on
I ′ in order to give a stable allocation, which yields a stable flow on I. Note that this holds
for irrational data as well. The fact that this method can be directly applied to instance I
is briefly mentioned by Fleiner [4]. In the following we will show how to interpret the direct
application of the Gale-Shapley algorithm on the network as a preflow-push-type algorithm and
prove its correctness. We will provide two variants, a basic preflow-push variant that is easy
to understand and one that resembles the alternating proposal/refusal scheme of the original
Gale-Shapley algorithm.

Proposal and refusal pointers For each vertex v ∈ V (D), the algorithm maintains two
pointers p[v] and r[v]. The first pointer, p[v], iterates through v’s list of outgoing edges from
the highest to the lowest priority edge. It points to that edge which v is currently willing to offer
more flow along. Likewise, r[v] iterates through v’s list of incoming edges from the lowest to the
highest priority edge. It points to that edge which v is going to refuse next, if necessary. For
technical reasons we introduce one more element to each preference list: after passing through
all neighbors p[v] reaches a state encoded by p[v] = 0. This means that v cannot submit any
more offers. Likewise r[v] = 0 initially, as v has no intention to refuse flow in the beginning.
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Initialization The algorithm starts by saturating all edges leaving the terminal set, i. e.,
f(sv) = c(sv) for all sv ∈ E(D) with s ∈ S. We define the excess of a vertex v w.r.t. f
by ex(v, f) :=

∑
uv∈δ−(v) f(uv) −

∑
vw∈δ+(v) f(vw), where δ−(v) denotes the set of incoming

edges, while δ+(v) stands for the outgoing ones. Note that f initially is not a feasible flow, as
ex(v, f) > 0 for some non-terminal vertices v ∈ V (D) \ S—we will call such vertices active.

Preflow-push variant The algorithm iteratively selects an active vertex v ∈ V (D) and
pushes as much flow as possible along p[v], advancing the proposal pointer whenever the edge
is saturated or an already refused edge is encountered. If p[v] reaches the 0-state before all
excessive flow has been pushed out of the vertex, it continues by decreasing the flow on the
incoming edge r[v], advancing the refusal pointer whenever the flow on the edge reaches 0.
After a push operation, the excess of the vertex is 0 and another active vertex is selected.
The algorithm terminates once there is no active vertex left. For a pseudo-code listing of this
preflow-push approach see Algorithm 1.

Simultaneous variant An alternative variant that resembles the Gale-Shapley algorithm
more closely can be obtained by performing alternating rounds of proposal and refusal steps,
respectively, on all active vertices simultaneously (cf. Algorithm 2). This variant of the algo-
rithm will prove useful when analyzing stable flows in a time-expanded network later in this
paper.

Algorithm 1 Preflow-Push Algorithm
Initialize p, r. Saturate all edges leaving S.
while ∃v ∈ V (D) \ S : ex(v, f) > 0 do

while ex(v, f) > 0 do
if p[v] 6= 0 then

propose(p[v])
else

refuse(r[v])
end if

end while
end while

Algorithm 2 Simultaneous Push Algorithm
Initialize p, r. Saturate all edges leaving S.
while ∃v ∈ V (D) \ S : ex(v, f) > 0 do

for all v ∈ V (D) : p[v] 6= 0 do
propose(p[v])

end for
for all v ∈ V (D) : p[v] = 0 do

refuse(r[v])
end for

end while
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procedure propose(e = (v, w))
if (r[w] >w e or w ∈ S) and f(e) < c(e) then

f(e) := min(f(e) + ex(v, f), c(e))
else

advance(p[v])
end if

end procedure

procedure refuse(e = (v, w))
if r[w] 6= 0 and f(e) > 0 then

f(e) := max(f(e)− ex(w, f), 0)
else

advance(r[w])
end if

end procedure

A special execution of Algorithm 1 gives the McVitie-Wilson algorithm [8] for the stable
marriage problem. We can determine the choice of active vertices while running Algorithm 1
on the flow instance defined by the stable matching instance. At initialization the source sends
one unit of flow to each vertex symbolizing a man. The active vertex chosen arbitrarily in the
first step is one of them. He proposes along his best edge, the asked lady accepts the offer and
sends the flow further to the sink. Now the second man will be chosen arbitrarily, he proposes
along his best edge. If any lady gets more than one offers, her vertex enters the active set and
she needs to be chosen next. Afterwards, the refused man must play the role of the selected
vertex, and so on. This way we run the deferred-acceptance algorithm by taking the men one
by one to the instance, always setting up a current stable matching.

Theorem 2.5. If c is integral, both algorithms return an integral stable flow in at most O (
∑
e∈E c(e))

iterations.

The proof is split into three parts:

Claim 1. Throughout the course of the algorithms, f is integral.

Proof. We prove this by induction. The claim is true after initialization as the capacities of all
edges are integral. Thus, before a call of refuse or propose, the excess of the corresponding
vertex is integral as well. This implies that the flow value of the corresponding edge is changed
by an integral amount.

Claim 2. Both algorithms terminate after O (
∑
e∈E c(e)) steps.

Proof. In each call of propose, the flow value of the corresponding edge is increased by an
integral amount (by Claim 1), or the pointer p is advanced. Likewise, in each call of refuse,
the flow value of the corresponding edge is decreased by an integral amount, or the pointer r
is advanced. Once refuse is called for some edge uv, the flow value cannot be increased by a
propose call anymore. Thus, there can be only at most O (

∑
e∈E c(e)) calls of propose and

refuse.

Claim 3. The algorithms return a stable flow.

Proof. After termination, f is a feasible flow, as the excess of every non-terminal vertex is
0. Now suppose there is a blocking walk in the network. There are two reasons for leaving
unsaturated edges in the network: either the edge was refused or there was no proposal along it
using all its capacity, it stayed at least partly unexamined. We will study which case can come
up at which position in the blocking walk.

If an unsaturated walk starts at a terminal vertex, then the first edge of it has been refused,
since s ∈ S must try to fill all its adjacent edges with maximum capacity. If the walk ends at
a terminal vertex, there was no full proposal along that edge in the algorithm, since terminal
vertices do not refuse any flow. If the blocking walk starts at a non-terminal vertex, then there
must be a dominating edge starting at the same vertex and having nonzero value. This proves
that the unsaturated edge has been refused, because vertices submit offers along edges in their
order in the preference list of the start vertex. A similar argument can applied to the end vertex
of the blocking walk: there must be a dominating edge ending at the same vertex and having
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nonzero value. The unsaturated edge can not be a refused one, since we always refuse the worst
edges.

The argument above shows that the blocking walk must start with a refused edge and end
with a not fully proposed one. This means that along the walk there has to be at least one
refused edge uv and an at least partly unexamined one vw. This implies that vertex v refused
flow although it has not filled up its outgoing quota, contradiction.

Corollary 2.6. If c is rational, both algorithms return a rational stable flow.

Proof. Any instance with rational capacity vector can be transformed to an instance with inte-
gral capacity vector by multiplying all capacities with their smallest common denominator.

A simple network setting can illustrate how large capacities may cause a long running time.
Note that this example is the flow extension of the allocation problem described by Baïou and
Balinski [1].

In the example above S = {s, t} and N is an arbitrary large number. After saturating sv
and su the simultaneous push algorithm saturates uw and vz and proposes along vw with one
unit. This offer will be accepted by w, forcing it to refuse one flow unit along uw. This way u
has to submit an offer to z, that needs to accept it and reject a flow unit from v. An alternating
cycle of new offers and refusals will be made along v, w, u, z as long as there is any flow to refuse
along uw and vz. This means in total N augmentations along the cycle.

3 Flows over time

3.1 Basic notions

We are given a network (D, c, τ) consisting of a directed graph D, some terminal vertices
S ⊆ V (D) and a capacity function c : E(D) → R>0 on the edges. The last element is the
transit time function: τ : E(D) → Z≥0. Besides these an instance contains a time horizon
T ∈ Z>0 as well. Loops and multiple edges are allowed in D.

Definition 3.1 (flow over time). Functions fe : {0, 1, ..., T − 1} → R≥0 for each edge e ∈ E(D)
form a flow over time or dynamic flow with time horizon T , if they fulfill all of the following
requirements:

1. fe(θ) = 0 for θ ≥ T − τ(e)
This ensures that flow can be sent from u along an edge uv, only if there is enough time
left for it to reach v.
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2. fe(θ) ≤ c(e) for all e ∈ E(D) and θ ∈ {0, 1, ..., T − 1}
Capacity constraints hold all the time.

3.
∑

e∈δ−(v)

∑
ξ≤θ−τ(e)

fe(ξ) =
∑

e∈δ+(v)

∑
ξ≤θ

fe(ξ) for all v ∈ V (D) \ S and θ ∈ {0, 1, ..., T − 1}

Flow conservation is fulfilled at every point in time.

Any dynamic flow problem can be converted into an ordinary flow problem with the help of
the time-expanded network. We create T copies of V (D), with vi denoting the (i+ 1)th copy of
vertex i. For every edge uv ∈ E(D) and every i ∈ {0, . . . , T − 1 − τ(uv)}, we connect ui with
vi+τ(uv). The vertices of DT with a fixed index i form a timeslot. Though this construction
reduces the flow over time concept to the static setting without transit times, the price of this
simplification is a considerably larger time-expanded network DT , having a size linear in T and
thus exponential in the input size. This does not always cause a problem: in the maximum
dynamic flow problem there is always a temporally repeated maximum flow that can be found
in polynomial time.

We extend the flow over time instance to stable flows over time, by introducing preference
lists. They have the same behavior as in the stable flow problem and they do not change in
time. The notion of stability can be extended to this instance the following way:

Definition 3.2 (stable flow over time). A directed walk W = (v1, e1, ..., ek−1, vk) is a blocking
walk of flow over time f , if there is a certain point in time 0 ≤ θ ≤ T − 1 such that all the
following properties hold:

1. each edge ei is unsaturated at time θ +
i−1∑
j=1

τ(ej)

2. v1 ∈ S or there is an edge e′ = v1u such that fe′(θ) > 0 and e1 <v1 e
′

3. vk ∈ S or there is an edge e′′ = wvk such that fe′′

θ +
k−1∑
j=1

τ(ej)− τ(e′′)

 > 0 and

ek−1 <vk
e′′

A blocking walk W can be interpreted in a similar way as in the static case: if the two
participants symbolized by the end vertices agree that sending some flow alongW would improve
their situation, then the scheme will be broken by them.

Note that a flow over time is stable, if and only if the corresponding flow in the time-expanded
network is stable in the classical sense.

Theorem 3.3. For every (D, c, τ,O) and time horizon T ∈ Z>0 there is a stable flow over time.

Proof. A stable static flow exists in the time-expanded network.

Corollary 3.4. In every stable flow over time with T ∈ Z>0 the terminal vertices send and
receive the same amount of flow in a fixed timeslot on all edges incident to them.

Proof. This follows from Theorem 2.4.

Note that these two statements hold even if the preference lists may change in time.
The following lemma gives important structural insights on the stable flow computed by the

simultaneous push algorithm (Algorithm 2), which will prove useful in the following sections.

Lemma 3.5. Let v ∈ V (D) \ S and i < j. At any step of the Algorithm 2, the following
statements hold:
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1. p[vi] ≤v p[vj ]

2. If p[vi] =v p[vj ] 6= 0, then f(p[vi]) ≤ f(p[vj ]).

3. r[vi] ≥v r[vj ]

4. If r[vi] =v r[vj ] 6= 0, then f(r[vi]) ≥ f(r[vj ]).

Proof. We prove the lemma by induction on the algorithm. Clearly, all statements are true
after initialization. We show that they also stay true after the end of each proposal loop. The
statement for refusal loops can be shown analogously.

First observe that if p[vi] <v p[vj ] before the loop, then (1) or (2) cannot be invalidated.
Thus, let p[vi] =v viwi+τ(e) and p[vj ] =v vjwj+τ(e) for some e = vw ∈ E(D).

(1) cannot be invalidated by a proposal loop: p[vi] will only be advanced if either f(p[vi]) =
c(p[vi]) or r[wk] ≤w p[vi] at the beginning of the loop. In the former case, f(p[vj ]) ≥ f(p[vi]) =
c(p[vj ]), in the latter case r[wl] ≤w r[wk] ≤w p[vj ] by (3), and thus in either case p[vj ] will be
advanced as well.

In order to see that (2) cannot be invalidated either, observe that the inflow of vj is at least
the inflow of vi: If e′ = uv ∈ E(D), then edge ui−τ(e′)vi exists in DT only if edge uj−τ(e′)vj
exists as well, and by (1) and (2), f(ui−τ(e′)vi) ≤ f(uj−τ(e′)vj) in this case. On the other hand,
the the outflow of vj on edges other than p[vj ] is at most the same as on edges of vi: Let
e′ = (v, u) with e′ 6= p[vj ]. If e′ >v p[vj ], then f(vjuj+τ(e′)) = 0. If e′ <v p[vj ] =v p[vi], then
either f(viui+τ(e′)) = c(e) ≥ f(vjuj+τ(e′)) or r[ui+τ(e)] ≤u e′, which implies f(vjuj+τ(e′)) ≤
f(viui+τ(e′)) by (3) and (4). Thus, f(p[vj ]) is set to a value at least as large as f(p[vi]).

(3) and (4) stay true during a proposal loop as no r-pointer and no flow value of any edge
r[u] for any vertex u ∈ V (DT ) is modified.

3.2 Infinite time

In this section we will prove the existence of a stable flow even if the time horizon is infinite.
This flow can be constructed by applying the simultaneous push algorithm on D∞ (under the
assumption that it can apply the propose and refuse steps on all vertices simultaneously).
Even more, after a certain point in time, the stable flow is identical to a temporal repetition of
the stable flow computed by the same algorithm in the static network D.

We define D∞i to be the subgraph induced by the vertices vj with j > i. We will run
Algorithm 2 in parallel on D and D∞, assuming we can execute the propose and refuse steps
simultaneously on all vertices of D∞. Let f be the flow values in D and f ′ be the flow values in
D∞ that occur throughout the run of the algorithm, and let p, r and p′, r′ be the corresponding
pointers, respectively.

Our main theorem in this section states that there is a point in time, from which on all
computations in the infinite time expanded network correspond one-to-one to those in the
static network.

Theorem 3.6. There is a time 0 ≤ i < ∞ such that throughout the course of the algorithm,
for every j ≥ i, f ′(ujvk) = f(uv) for all edges uv ∈ E(D) and p′[vj ] =v p[v] and r′[vj ] =v r[v]
for all v ∈ V (D).

Proof. Let τmax := maxe∈E(D) τ(e). We will first prove by induction that after K iterations of
the algorithm the statement of the theorem is true for iK := K · τmax. Clearly, this is true after
initialization, as all edges leaving the terminal set are saturated and all pointers are at their
initial state.

Now assume that after iteration K, the state of all flow variables and pointers in D∞iK is
identical to that in D. Now let v ∈ V (D) be any vertex that is subject to a propose operation
in D. Note that for j > iK+1, vertex vj is only incident to edges in D∞iK , as iK+1 = iK + τmax.
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Therefore, ex(vj , f ′) = ex(v, f). As p′[vj ] =v p[v] and r′[wj+τ(e)] =w r[w], the propose call has
the same effect on p′[vj ] and f ′(p[vj ]) as it has on p[v] and f(p[v]). An analogous statement
holds for calls of refuse.

We now have shown that up to iteration K, the statement of the theorem holds for iK . Now
let K0 be the number of iterations performed by Algorithm 2 before f is a stable flow in D.
After iteration K0, no flow values or pointers in D are changed. Let i := iK0+1. We will show
that after iteration K0, also no flow values or pointers in D∞i are changed, which concludes the
proof of the theorem.

After iteration K0, all vertices in D∞i are inactive. Thus, their state can only change if
the flow value on an edge vkwl for k < i and l ≥ i is increased. This can only happen, if
f ′(vkwl) < c(e), as well as r′[wl] >w vkwl, and p[vk] =v vw. Note that after iteration K0,
f ′(vk+τmaxwl+τmax) = f ′(vkwl) and r′[wl+τmax ] =w r′[wl] >w vw by choice of i = iK0+1. Now,
by Lemma 3.5, p[vk+τmax ] ≤v p[vk], and as vk+τmaxwl+τmax is neither refused nor saturated,
p[vk+τmax ] =v vw =v p[vk]. Again by Lemma 3.5, f ′(vkwl) ≤ f ′(vk+τmaxwl+τmax) throughout the
remaining course of the algorithm, i. e., f ′(vkwl) cannot be increased before vk+τmax becomes
active. Thus, f(vkwl) cannot be increased.

Corollary 3.7. Algorithm 2 constructs a stable flow f ′ in DT such that f ′(viwi+τ(vw)) = f(vw)
for all vw ∈ E(D) and all j ≥ (K0 + 1) · τmax, where K0 is the number of iterations performed
by the same algorithm to compute the stable flow f in D.

3.3 Storing at vertices

The third point in the definition of a flow over time requires flow conservation in every timeslot.
A different model allows storing at vertices: a vendor may delay the shipment of goods at his
convenience, as long as the flow arrives the terminal vertices within the time horizon. More
formally, we generalize the definition of the excess of vertex v at time θ as the amount of stored
goods at vertex v at time θ:

exf (v, θ) :=
∑

e∈δ−(v)

∑
ξ≤θ−τ(e)

fe(ξ)−
∑

e∈δ+(v)

∑
ξ≤θ

fe(ξ)

While strict flow conservation requires exf (v, θ) = 0 for all non-terminal vertices and times
in {0, ..., T − 1}, weak flow conservation allows exf (v, θ) ≥ 0 except for time T − 1, where
exf (v, T − 1) = 0 must hold for all v ∈ V (D) \ S.

The time-expanded network can be adapted for weak flow conservation by introducing so-
called holdover edges vivi+1 of infinite capacity for each v ∈ V (D) and i ∈ {0, ..., T −2}. Setting
the ranks of these holdover edges in the preference lists allows the investigation of interesting
variations. One intuitive view comes from the fact that storing goods is expensive and people
are impatient, thus letting the edges vivi+1 be the last on vi’s preference list and the first on
vi+1’s preference list. In the following we will investigate the four main cases with weak flow
conservation, given by varying first and last preferences on the end vertices of holdover edges.
In each case we study how the sets of stable flows obeying the different flow conservation rules
are related to each other.

We adapt the definition of blocking walk for the case of intermediate storing. Apart from a
starting time θ we need the exact time θi when the walk in D leaves a vertex vi. A walk in D
together with a sequence {θ, θ1, θ2, ..., θk} uniquely determines a walk on DT .

Example 3.8. Introducing waiting at vertices stable flows may lose their stability, independent
from the rank of holdover edges.

Proof. Consider the following example:
All edges in the static network have unit capacity and unit transit time, s and t are the

non-terminal vertices. The unobvious preferences are shown on the edges. The time-expanded
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network with T = 5 stands on the right side, showing only the vertices and edges that may be
used in a feasible flow. On the static network above there are three stable flows, each of them
uses a different incoming edge of z. If waiting is not allowed, then the dynamic flow shown by
the thick edges on the second network is stable, since all unsaturated paths are dominated by
it at one end. Adding holdover edges to the time-expanded network breaks the scheme: the
walk {u1, w2, w3, z4} (denoted by dashed lines) blocks the flow over time. Note that this is
independent of the rank of the holdover edges, since we only need dominance at the ends of the
blocking walk.

Theorem 3.9. If T is sufficiently large and holdover edges always stand on the first place on
preference lists, then there is no stable flow with value 0 on all holdover edges.

Proof. Suppose there is a stable flow on the time-expanded network that does not use any of
the holdover edges. Consider all the copies of an arbitrary non-terminal vertex v: If there are
two of them that have a positive value on all incoming (and outgoing) edges in total, then
holdover edges between them form a walk that blocks the flow. This way a stable flow over
time passes through an arbitrary non-terminal vertex maximal once. Apart from the terminal-
terminal edges that do not affect stability—a flow with this property has positive value on at
most 2|V (D) \ S| edges in the time-expanded network.

These maximum 2|V (D)\S| edges have to ensure that there is no unsaturated walk between
terminal vertices. If the length (w.r.t. transit times) of the shortest walk is denoted by τ(Wmin),
then T − τ(Wmin) + 1 is a lower bound for the number of disjoint walks between terminal
vertices. In order to saturate at least one edge along these walks, the inequality 2|V (D) \ S| ≥
T − τ(Wmin) + 1 must hold, otherwise at least one copy of the shortest walk is unsaturated,
hence it blocks the flow.

Theorem 3.10. If T ∈ Z>0 and the holdover edges stand on the last place on preference lists,
then the stable flow produced by the simultaneous push algorithm has value 0 on all holdover
edges.

Proof. By contradiction assume, there is a holdover edge with positive flow value at some vertex
v. W.l.o.g., assume i to be minimal with f(vivi+1) > 0. Since the time horizon is finite, there
also is a latest point in time j such that f(vjvj+1) > 0.

Since f(vivi+1) > 0, the pointer p[vi] must already have passed all outgoing non-holdover
edges of vi, offering as much flow as the corresponding vertices are willing to accept. Therefore,
by Lemma 3.5, the flow on each of these edges must be at least the flow on the corresponding
edges of vj+1 (if they exist). Thus, the total outflow of vi exceeds the total outflow of vj+1 by
at least f(vivi+1). On the other hand, r[vj+1] points either to 0 or the incoming holdover edge,
and thus vj+1 does not refuse any flow on the regular incoming edges. Again by Lemma 3.5,
the flow on those edges is at least the flow on the corresponding edges of vi. Thus, the total
inflow of vj+1 exceeds the total outflow of vi by at least f(vjvj+1). Putting this together yields
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inflow(vj+1)−outflow(vj+1) ≥ inflow(vi)+f(vjvj+1)−outflow(vi)+f(vivi+1) > 0, contradicting
flow conservation.

In the other two cases, when holdover edges are the best for one of the end vertices and the
worst for the other one, storing can be used or avoided depending on the network. There are
even networks where all stable flows have positive value on some holdover edges.

Conclusion and open questions
We introduced stable flows over time, extending the concept of stability to network flows over
time. As initial results, we proved the existence of stable flows both for finite and infinite time
horizon. In both cases, a stable flow can be computed in pseudo-polynomial time by applying
a preflow-push algorithm operating directly on the flow network. We also showed that the
possibility of storage at non-terminal vertices has an effect on the set of stable flows, depending
on the preference given to holdover edges in the time expanded network.

Although this paper provides first structural insights, many questions brought up by the
definition of stable flows over time remain open, most prominently the complexity of the stable
flow problem: Is there a polynomial time algorithm for finding a stable flow? As of today, it
is not even clear whether a stable flow over time can be encoded in polynomial space. First
research in this direction indicates that at least the concept of (generalized) temporally repeated
flows cannot be applied directly.

Also, further extension of stability can be studied on the new setting, e. g., special edges or
ties on preference lists, as can be extensions of the flow over time model, e. g., connections to
earliest arrival flows. Finally, we conjecture a stronger form of Theorem 3.10: If holdover edges
have lowest priority at both start and end vertex, no stable flow uses storage at non-terminal
vertices.
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Matching with partially ordered contracts

Rashid Farooq∗ Tamás Fleiner† Akihisa Tamura‡

July 20, 2012

Abstract

In this paper, we study a many-to-many matching model with contracts. We extend the

economic model of Hatfield and Milgrom by allowing a partial order on the possible bilateral

contracts of the agents in a two-sided market economy. To prove that a generalized stable allo-

cation exists, we use generalized form of properties like path-independence and substitutability.

The key to our results is the well-known lattice theoretical fixed point theorem of Tarski. The

constructive proof of this fixed point theorem for finite sets turns out to be the appropriate

generalization of the Gale-Shapley algorithm also in our general setting.

1 Introduction

A significant step in the research of generalized two-sided matching markets is the observation that

there is a close connection between stability and Tarski’s well-known fixed point theorem [9]. The

first such step was probably done by Adachi [1] who described stable marriages as fixed points of

a monotone function. Fleiner [5, 6] proved that a fairly general class of stability problems defined

with the help of choice functions (including many-to-many versions and matroid-generalizations

and much more) fits into the Tarski-based framework. Choice functions in this framework must

have the so called comonotone property that is closely related to the well-known substitutability

condition. Fleiner pointed out that the well-known theorem by Blair [4] on the lattice structure

of generalized stable matchings follows more or less directly from Tarski’s fixed point theorem. He

also pointed out that the proposal algorithm of Gale and Shapley [7] can be regarded as an iteration

method of a monotone function for finding a maximal or a minimal fixed point. A key ingredient

in Fleiner’s approach is that he considered the set of edges of the underlying bipartite graph as

the domain of the key monotone mapping. Fleiner defined the so-called increasing property of

a choice function meaning that if we extend the choice set then the number of choices picked

cannot decrease. He proved that if choice functions are increasing (beyond comonotone and path-

independent) then fixed points of the corresponding monotone function form a sublattice. Hence,

the lattice operations on the stable solutions can be calculated directly by the corresponding choice
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functions. An easy consequence of this is that a natural generalization of the rural hospitals

theorem holds for increasing, comonotone and path-independent choice functions. (The “rural

hospital theorem” says that if a certain hospital h cannot fill up its quota in some stable matching

then hospital h gets the same set of residents in any stable matching.) Based on the Tarski-

framework and other well-known results, Fleiner also gave a linear description of several stable

matching related polyhedra.

Independently and after Fleiner’s work, Alkan [2] and Alkan and Gale [3] proved that if choice

functions are cardinal monotone, or more generally size monotone then stable matchings form a

lattice and an extension of the rural hospital theorem also holds. These works do not lean on

Tarski’s theorem and hence the basis of the proofs is a natural generalization of the proposal

algorithm of Gale and Shapley.

A major breakthrough in popularizing the Tarski framework was done by Hatfield and Milgrom

in [8]. They rediscovered several results of Fleiner and formulated them in a terminology that

is much closer to Economists than the former Mathematical approach. In particular, they called

the set of edges of the underlying bipartite graph “contracts” and defined substitutable mappings

on them. They formulated a stability concept equivalent to Fleiner’s in [5, 6] and proved that if

contracts are substitutes (that is, if the choice functions are comonotone) for the hospitals and

doctors have a linear preference order then in this two-sided one-to-many market stable allocations

are basically the fixed points of a monotone function. They also pointed out that the Gale-Shapley

algorithm is a monotone function iteration. Another important achievement of [8] is the formu-

lation of the “law of aggregate demand” that corresponds to Fleiner’s increasing property and

Alkan’s cardinal monotonicity. A main result is that if this condition also holds for the hospitals’

choice functions then the rural hospital theorem can be generalized and that honest behaviour is

a dominant strategy for the doctors if the doctor optimal stable assignment is realized after some

bargaining process.

We propose a model that is a genuine generalization of the models by Fleiner [5, 6] and Hatfield

and Milgrom [8]. We give an example of natural and practical preferences which are substitutable in

our framework but not in the existing models. This shows that our model is not just a mathematical

generalization but also a practically interesting one. Our main results are contained in Section

4 where we prove the existence of a stable solution and we extend Blair’s result on the lattice

structure of stable assignments [4] to our model. We point out that the proposal algorithm of Gale

and Shapley can be regarded as an iteration of a monotone mapping. We show another related

result in this section by demonstrating that a generalization of the proposal algorithm of Gale and

Shapley can be used to calculate the lattice operations on stable solutions.

2 Preliminaries

In this section, we recall some concepts related to partially ordered sets (posets) that are essential

in our framework.

A partially ordered set (or poset) P on a ground set X is a pair P = (X,≤) where ≤ is a

reflexive, antisymmetric and transitive binary relation on X. (That is, for any x, y, z ∈ X we have

x ≤ x and (x ≤ y ≤ x ⇒ x = y) and (x ≤ y ≤ z ⇒ x ≤ z.) Elements x and y of poset P = (X,≤)

are comparable if x ≤ y or y ≤ x, otherwise x and y are incomparable. If P = (X,≤) is a poset

then a lower ideal is a set X ′ of X such that if y ≤ x ∈ X ′ then y ∈ X ′ holds. Poset P = (X,≤)
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is called trivial if no two different elements of X are comparable. We shall often abuse notation

by identifying a poset with its ground set, so for example a mapping f : P → P means simply

a mapping f : X → X if we want to emphasize the underlying partial order. Or a subset P ′ of

poset P = (X,≤) means a poset P ′ = (X ′,≤ |X′) for some subset X ′ of X where ≤ |X′ means the

restriction of binary relation ≤ on X ′.

A subset A of X is an antichain of P if no two elements of A are comparable in P , that is,

if a 6≤ a′ and a′ 6≤ a for different elements a, a′ of A. Let L(P ) and A(P ) denote the set of lower

ideals and antichains of P , respectively. Note that if P is trivial then L(P ) = A(P ) = 2X , which

consists of all subsets of X. For finite posets P , there is a natural bijection between L(P ) and

A(P ). If L ∈ L(P ) is lower ideal then clearly Max(L) = {x ∈ L : x ≤ x′ ∈ L ⇒ x = x′} is an

antichain, so Max : L(P ) → A(P ). Moreover, if A ∈ A(P ) is an antichain then Li(A) := {x ∈ X :

∃a ∈ A such that x ≤ a} is a lower ideal, hence Li : A(P ) → L(P ). It is easy to check that for

any finite poset Li(Max(L)) = L and Max(Li(A)) = A hold for any lower ideal L of L(P ) and any

antichain A of A(P ), that is, Max and Li are inverses of one another and both of them define a

bijection between L(P ) and A(P ).

Recall that a poset L = (X,≤) is a lattice if any two elements x and y of L have a least upper

bound (denoted by x ∨ y) and a greatest lower bound (denoted by x ∧ y), that is, if (y ≤ z ≥

x ⇒ z ≥ x ∨ y) and (y ≥ t ≤ x ⇒ t ≤ x ∧ y) hold. A lattice is called complete if any (possibly

infinite) subset Y of X has a least upper bound
∨

Y and a greatest lower bound
∧

Y . An example

of a complete lattice is (2X ,⊆). Clearly, the lattice operations in (2X ,⊆) are ∪ and ∩. If L is a

lattice then subset L′ of L is a sublattice if L′ is closed with respect to lattice operations ∨ and ∧.

If L′ is closed even with respect to the infinite lattice operations
∨

and
∧

then L′ is a complete

sublattice of L. We shall also need a less restrictive definition of a substructure. A subset L′ of L

is a (complete) lattice subset of L if L′ is a (complete) lattice for the restriction of ≤. It is clear

from the definition that any (complete) sublattice is a (complete) lattice subset but the converse

is not true.

Assume that P = (X,≤) is a poset on X. Clearly, L(P ) ⊆ 2X , and we have equality if and

only if P is trivial. For nontrivial posets P the following is true.

Observation 2.1. L(P ) is a complete sublattice of (2X ,⊆), but not all complete sublattices of

(2X ,⊆) are of this form.

We shall lean on Tarski’s fixed point theorem, an important result on complete lattices. A

mapping f : X → X on poset P = (X,≤) is monotone if x ≤ y implies f(x) ≤ f(y).

Theorem 2.2 (Tarski [9]). If L = (X,≤) is a complete lattice and f : X → X is monotone then

the set of fixed points F := {x ∈ X : f(x) = x} forms a nonempty complete lattice subset of L.

For a finite lattice L, there is a straightforward proof of the existence of a fixed point in

Theorem 2.2. Namely, if 0 denotes the smallest element of L then by monotonicity we have that

0 ≤ f(0) ≤ f(f(0)) ≤ f(f(f(0))) ≤ . . . and by finiteness, there has to be an iterated image of 0

that is mapped to itself. It is easy to see that the fixed point of f constructed this way is a lower

bound in L to any other fixed point of f . Similarly, if we start iterating f from 1 (that denotes the

maximal element of L) then we get a decreasing sequence 1 ≥ f(1) ≥ f(f(1)) ≥ . . . that eventually

arrives to the maximal fixed point of f .
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3 The economic model

In this section, we give a mathematical description of our model that is a genuine extension of that

of Hatfield and Milgrom described in [8].

Let D and H be two disjoint sets of agents. We regard D as the set of doctors and H as

the set of hospitals. By a contract x, we always mean an agreement between doctor D(x) ∈ D

and hospital H(x) ∈ H. Let X denote the finite set of all possible contracts in the model. For

any subset X ′ of X, doctor d of D and hospital h of H, X ′(d) = {x ∈ X ′ : D(x) = d} and

X ′(h) = {x ∈ X ′ : H(x) = h} denote all the contracts that involve doctor d and hospital h,

respectively.

The main difference between our model and that of Hatfield and Milgrom in [8] is that in our

model we allow certain implications between contracts. An example is that if x is a contract that

assigns doctor D(x) to hospital H(x) for some i days a week then it is always possible to choose

contract x′ between D(x) and H(x) that describes the same job as x does except that the total

weakly workload is j days for j < i. Or, instead of contract x doctor D(x) and hospital H(x) may

agree on signing a contract x′ for a job that needs a lower qualification than x needs. In these

examples, the possibility of contract x implies the possibility of contract x′ and we denote this fact

by x′ ¹ x. We assume that P = (X,¹) is a poset on the set X of possible of contracts1. It is easy

to check that if there is no implication between contracts whatsoever (that is, if any two contracts

are incomparable in poset P , i.e. if P is trivial) then our model reduces to that of Hatfield and

Milgrom.

Just like in the Hatfield-Milgrom model, hospitals and doctors have certain preferences on the

contracts they participate in. This is described by choice functions as follows. Assume that X ′ ⊆ X

is a lower ideal of P . Then Cd(X
′) denotes those contracts of X ′(d) that doctor d would pick from

X ′(d) if she is allowed to choose freely. Note that though in the Hatfield-Milgrom model, choice

function Cd always selects at most one contract (hence it is a so-called one-to-many matching

market), we do not assume this property. For any hospital h, we have a similar choice function Ch

that selects the favourite contracts of hospital h from X ′(h). We assume that Cd and Ch always

select an antichain of P . (That is, if d can work t or t′ hours (t ≤ t′) for h according to contracts x

and x′ (x ¹ x′) then d never wants to sign both contracts x and x′ and the same is true for h.) As

each agent in our two-sided market has a choice function, we can define two joint choice functions:

one for the doctors and one for the hospitals. Formally,

CD(X
′) =

⋃
{Cd(X

′) : d ∈ D} and CH(X ′) =
⋃

{Ch(X
′) : h ∈ H}

denote the doctors’ and hospitals’ choice function, respectively. Clearly, each choice function C we

defined so far is mapping lower ideals of P into antichains of P such that C(L) ⊆ L holds for any

lower ideal L of P . For such a choice function C : L(P ) → A(P ), we define another choice function

C∗ : L(P ) → L(P ) by C∗(L) := Li(C(L)). As there is a bijection between antichains and lower

ideals of P , not only C determines C∗, but we can calculate C from C∗ by C(L) = Max(C∗(L)).

Obviously, if P is trivial then C = C∗. We can also talk about choice functions in a more general

sense. If F is a subset of 2X then a choice function on F is a mapping C : F → F such that

1Later we shall see that all our results are true in the more general setting where we do not assume any acyclicity

about implications between contracts. One can define “lower ideals” on the transitive closure of the implication

digraph and these “lower ideals” form a complete sublattice of (2X
,⊆).
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C(F ) ⊆ F holds for any element F of F . Note that choice functions C∗
D

and C∗
H

are choice

functions in this latter sense, as well.

There are two important properties of choice functions that we shall assume in our model.

Choice function C : F → 2X on subset F of 2X is path-independent if

C(F ) ⊆ F ′
⊆ F ⇒ C(F ) = C(F ′) (3.1)

holds for any two members F and F ′ of F . Note that in the Hatfield-Milgrom model, choice

functions are defined by a strict linear order on the subsets of X such that C(Y ) is that subset

of Y that comes first in this linear order. (We shall see an example of such a choice function in

Example 3.7.) Clearly, such choice functions are path-independent by definition. Note that the

“traditional” definition of path-independence is different from ours. Actually, (3.1) is weaker than

that.

Observation 3.1. Let L be a lattice. If for choice function C : L → L identity C(A ∪ B) =

C(C(A) ∪ C(B)) holds for any members A,B ∈ L then (3.1) is also true for C.

In Lemma 3.5 we shall see that assuming substitutability (that we define a bit later) of C then

”traditional” path-independence is equivalent to (3.1). The following statement is easy to check.

Observation 3.2. If P is a poset on X then choice function C : L(P ) → A(P ) is path-independent

if and only if choice function C∗ : L(P ) → L(P ) is path-independent.

From now on, L denotes a complete sublattice of (2X ,⊆). To get some intuition, the reader

might simply think that L = L(P ), but our results that we claim for general complete sublattices

are more general than the ones with this restriction. We do think that general complete sublattices

still capture some interesting Economics models that do not fit in the poset-framework.

If C : L → L is a choice function then we can compare certain members of L with the help of

C in the following way. We say that member L is C-better than member L′ (denoted by L′ ¹C L)

if C(L ∪ L′) = L. We can extend this notion for antichains if choice function C : L(P ) → A(P )

maps lower ideals to antichains. This way, antichain A of P is C-better than A′ ∈ A(P ) (denoted

by A′ ¹C A) if C(Li(A ∪ A′)) = A. Note that the same notation for lower ideals and antichains

does not cause ambiguity as the range of C determines which one we talk about. Note further that

¹C is not necessarily a partial order.

The second important property of a choice function is substitutability (or comonotonicity, as

called by Fleiner in [6]) that we define here in a somewhat unusual way. A mapping U : L → L is

called antitone if U(L′) ⊆ U(L) holds whenever L ⊆ L′ holds for elements L and L′ of L. Choice

function C∗ : L → L is substitutable if there exists an antitone mapping U : L → L such that

C∗(L) = L∩U(L) holds for each member L of L. A choice function C : L(P ) → A(P ) that selects

an antichain is called substitutable if C∗ is substitutable. Recall that C∗(·) = Li(C(·)), and C∗ = C

if underlying order of the poset is trivial. A choice function C in a traditional two-sided market

model selects C(Y ) from a set Y of alternatives such that C(Y ) is the set of all those choices that

are undominated by set Y of alternatives. The substitutability property captures the fact that a

broader set of alternatives leaves less undominated choices. Or, equivalently, if the choice set is

growing then the set of dominated (hence rejected) alternatives is also growing. This phenomenon

is used in the definition of substitutes by Hatfield and Milgrom: elements of X are substitutes

for choice function C : 2X → 2X if the set of rejected elements is a monotone mapping, that is,

R(Y ) := Y \ C(Y ) ⊆ Y ′ \ C(Y ′) = R(Y ′) whenever Y ⊆ Y ′ ⊆ X.
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Observation 3.3. If elements of X are substitutes for choice function C : 2X → 2X in the sense

of Hatfield and Milgrom then C is substitutable.

Proof. As rejection function defined by R(Y ) := Y \ C(Y ) is monotone, its complement U(Y )

defined by U(Y ) := X \ R(Y ) is antitone. As partial order of P is trivial, U(Y ) is a lower ideal.

Observe that Y ∩U(Y ) = Y ∩ (X \R(Y )) = Y \R(Y ) = Y \ (Y \C(Y )) = C(Y ), hence C is indeed

substitutable.

Example 3.4. Assume that hospital h has a linear preference order on X(h) and Ch(X
′) for

X ′ ⊆ X is the qh best elements of X ′(h). (Here, there is no partial order on X, or if we insist on

having one then it is trivial.) It is easy to check that Ch is path-independent and contracts in X(h)

are substitutes. To see that Ch is substitutable, we define U : 2X → 2X by U(X ′) denoting the

set of those contracts x of X(h) such that X ′(h) contains at most qh − 1 contracts that are better

than x according to the preference order of h. Clearly, if X ′ ⊆ X ′′ then U(X ′) ⊇ U(X ′′), so U is

antitone. It is also clear by the definition of U that Ch(X
′) = X ′ ∩ U(X ′), that is, Ch is indeed

substitutable.

It is well-known that our definition of path-independence is equivalent to the “traditional” one

for substitutable choice functions.

Lemma 3.5. If choice function C∗ : L → L is substitutable and path-independent then identity

C∗(A ∪B) = C∗(C∗(A) ∪ C∗(B)) holds for any members A,B of L.

The following theorem points out an interesting property of substitutable choice functions.

Theorem 3.6. If choice function C : L(P ) → A(P ) is path-independent and substitutable for some

poset P on a finite ground set X then ¹C is a partial order on {C(L) : L ∈ L(P )}, that is, on

those antichains of P that are in the range of C.

Proof. Assume that A = C(L) for some L ∈ L(P ). This means that A ⊆ Li(A) ⊆ L hence

C(Li(A)) = A by path-independence of C. Obviously, C(Li(A ∪ A)) = C(Li(A)) = A, hence

A ¹C A, that is, ¹C is reflexive. Now assume that C(Li(A′)) = A′ also holds. Clearly, if A′ ¹C A

and A ¹C A′ then A = C(Li(A ∪ A′)) = A′, hence A = A′, so ¹C is antisymmetric. Note that we

did not use the substitutable property of C so far.

To prove transitivity, assume that C(Li(A′′)) = A′′ and A ¹C A′ ¹C A′′ hold. Define L :=

Li(A), L′ := Li(A′) and L′′ := Li(A′′). From the assumption we have that C(L ∪ L′) = A′ and

C(L′∪L′′) = A′′, or, as P is finite this is equivalent to saying that C∗(L∪L′) = L′ and C∗(L′∪L′′) =

L′′. Since C∗ is substitutable, there exists an antitone mapping U with C∗(L) = L ∩ U(L) for all

L ∈ L(P ). From the definition and the antitone property of U we get that

C∗(L ∪ L′ ∪ L′′) = (L ∪ L′ ∪ L′′) ∩ U(L ∪ L′ ∪ L′′)

= ((L ∪ L′) ∩ U(L ∪ L′ ∪ L′′)) ∪ ((L′ ∪ L′′) ∩ U(L ∪ L′ ∪ L′′))

⊆ ((L ∪ L′) ∩ U(L ∪ L′)) ∪ ((L′ ∪ L′′) ∩ U(L′ ∪ L′′))

= C∗(L ∪ L′) ∪ C∗(L′ ∪ L′′) = L′ ∪ L′′.

This means that C∗(L∪L′∪L′′) ⊆ L′ ∪ L′′ ⊆ L ∪ L′ ∪ L′′, hence by path-independence of C∗, we

have C∗(L∪L′∪L′′) = C∗(L′∪L′′) = L′′. So C∗(L∪L′∪L′′) = L′′ ⊆ L∪L′′ ⊆ L∪L′∪L′′ and again,

path-independence implies C∗(L∪L′′) = L′′. This follows that C(L∪L′′) = A′′, or, in other words

A ¹C A′′. We conclude that ¹C is transitive, so it is indeed a partial order.
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The following example shows that our poset-based model is more general than that of Hatfield

and Milgrom in [8].

Example 3.7. Assume that we have one hospital h, two doctors d, d′ and six contracts X =

{x3, x4, x5, x
′
3
, x′

4
, x′

5
}. Contracts x3, x4, x5 and x′

3
, x′

4
and x′

5
represent a 3, 4 and 5 days job for

d and d′, respectively. Assume that h has the following preference order on feasible contract sets

(starting from the best):

{x4, x
′
4
}, {x5, x

′
3
}, {x3, x

′
5
}, {x4, x

′
3
}, {x3, x

′
4
},

{x3, x
′
3
}, {x5}, {x

′
5
}, {x4}, {x

′
4
}, {x3}, {x

′
3
}.

So Ch(Y ) is that subset of Y which is the first in the above order. In particular, we have that

Ch(x5, x4, x3, x
′
5
, x′

3
) = {x5, x

′
3
}, so x4 ∈ Rh(x5, x4, x3, x

′
5
, x′

3
). Hence, if contracts were substitutes

for Ch then Rh is monotone thus x4 ∈ Rh(x5, x4, x3, x
′
5
, x′

4
, x′

3
) = Rh(X). This means that x4 6∈

Ch(X) contradicting Ch(X) = {x4, x
′
4
}.

The preference of h is natural and practical in the sense that h wants to employ doctors as many

days as possible up to 8 days on primary criterion, as equally as possible on secondary criterion,

and thirdly h prefers d to d′. Unfortunately, the framework of Hatfield and Milgrom excludes it

because it is not substitutable in the framework. The reason is that several subsets of X, e.g.,

{x5, x4, x3, x
′
5
, x′

3
}, are inappropriate (why does not d′ work 4 days even if he can work 3 or 5

days?) However, the above Ch easily fits in our framework if we define poset P by x3 ¹ x4 ¹ x5

and x′
3
¹ x′

4
¹ x′

5
. Clearly, this Ch is path-independent by definition. To see that Ch is also

substitutable in the above framework, for L ∈ L(P ), define U(L) := {x3, x4, x
′
3
, x′

4
} ∪ u(L) ∪ u′(L)

where u(L) = ∅ if x4 ∈ L and u(L) = {x′
3
, x′

4
, x′

5
} if x4 6∈ L, and similarly u′(L) = ∅ if x′

4
∈ L

and u′(L) = {x3, x4, x5} if x′
4
6∈ L. As both u and u′ are antitone, U is also such. Hence choice

function C∗ defined by C∗(L) = L∩U(L) is substitutable and one can easily check that C∗ = C∗
h
on

lower ideals of P . Hence, our model is indeed a genuine generalization of Hatfield and Milgrom’s.

Note that for a substitutable choice function C∗ : L → L, there might be several antitone

functions U : L → L such that C∗(L) = L ∩ U(L) holds for any member L of L. The next

statement shows that there is a canonical one among these antitone functions and this is in fact

the minimal of those. (Actually, there is a maximal such U as well, but we do not need this fact.)

For a choice function C∗ : L → L define U∗ : L → L by

U∗(L) :=
⋃

{Y ∈ L : Y ⊆ C∗(L ∪ Y )} =
⋃

{Y ∈ L : Y ⊆ U(L ∪ Y )}. (3.2)

Note that the second equality in (3.2) holds by the definition of substitutability, and this means

that the right hand side defines the same U∗ no matter which U (that defines C∗) we use.

Observation 3.8. If choice function C∗ : L → L is substitutable then U∗ in (3.2) is antitone and

for any member L of L we have C∗(L) = L ∩ U∗(L).

Proof. Assume that C∗ is substitutable, and U : L → L is an antitone function such that C∗(L) =

L ∩ U(L) holds for any member L of L. Define

U ′(L) := {Y ∈ L : Y ⊆ C∗(L ∪ Y )} = {Y ∈ L : Y ⊆ U(L ∪ Y )},

that is, U∗(L) =
⋃

U ′(L). Observe that if L and L′ are members of L with L ⊆ L′ and Y ∈ U ′(L′)

then Y ⊆ U(L′ ∪ Y ) ⊆ U(L ∪ Y ) by the antitone property of U . This means that U ′(L′) ⊆ U ′(L),

hence U∗(L′) =
⋃

U ′(L′) ⊆
⋃

U ′(L) = U∗(L), so U∗ is indeed antitone.
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For the second part, observe that C∗(L) ∈ U ′(L) by definition, hence C∗(L) ⊆ U∗(L) and

C∗(L) ⊆ L ∩ U∗(L). Moreover, if Y ∈ U ′(L) then Y ∩ L ⊆ Y ⊆ U(L ∪ Y ) ⊆ U(L), hence

Y ∩ L ⊆ L ∩ U(L) = C∗(L) holds for any Y ∈ U ′(L). This follows that

L ∩ U∗(L) = L ∩ (
⋃

U ′(L)) =
⋃

{L ∩ Y : Y ∈ U ′(L)} ⊆ C∗(L),

so L ∩ U∗(L) = C∗(L) as we claimed.

There is another useful fact about the antitone function U∗ that defines a path-independent

substitutable choice function.

Observation 3.9. If choice function C∗ : L → L is path-independent and substitutable then

U∗(L) = U∗(C∗(L)) holds for any member L of L.

Proof. It follows from the antitone property of U∗ and C∗(L) ⊆ L that U∗(L) ⊆ U∗(C∗(L)). To

show the opposite inclusion, assume that Y ∈ U ′(C∗(L)), that is, Y ⊆ C∗(C∗(L) ∪ Y ) holds. We

show that

Y ⊆ C∗(L ∪ Y ), (3.3)

that is, Y ∈ U ′(L), hence U ′(C∗(L)) ⊆ U ′(L) and U∗(C∗(L)) =
⋃

U ′(C∗(L)) ⊆
⋃

U ′(L) = U∗(L).

To prove (3.3), observe that

C∗(L∪Y ) = (L∪Y ) ∩ U∗(L∪Y ) ⊆ (L∪Y ) ∩ U∗(L) ⊆ (L ∩ U∗(L)) ∪ Y = C∗(L) ∪ Y,

hence C∗(L∪Y ) ⊆ C∗(L)∪Y ⊆ L∪Y . Path-independence of C∗ gives C∗(L∪Y ) = C∗(C∗(L)∪Y )

and our assumption Y ⊆ C∗(C∗(L) ∪ Y ) proves (3.3) that concludes the proof.

At this point, we can generalize the notion of stability to our framework. Let D and H be the

sets of doctors and hospitals, respectively, and let X denote the set of possible contracts between

doctors and hospitals. Assume that we are given a (complete) sublattice L of (2X ,⊆) (for example

as the set of lower ideals of a poset P on X), and let C∗
D

= (CD)
∗ and C∗

H
= (CH)∗ denote the

joint choice functions of the doctors and of the hospitals, respectively. For members L1 and L2 of

L, pair (L1, L2) is called a stable pair if

U∗
D(L1) = L2 and U∗

H(L2) = L1 (3.4)

hold. If L = L(P ) for some poset P on X then antichain A of P is called stable if

U∗
D(Li(A)) ∩ U∗

H(Li(A)) = Li(A). (3.5)

Later we shall see that stable pairs are closely related to stable antichains. These latter represent

the solution concept of two-sided market situations in our model. What does it mean that an

antichain is stable? The first requirement is that if both doctors and hospitals select freely from

those contracts that antichain A represents or implies then doctors select CD(Li(A)) = Max(Li(A)∩

U∗
D
(Li(A)) = Max(Li(A)) = A, as Li(A) ⊆ U∗

D
(Li(A)). Similarly, it follows that CH(Li(A)) = A, so

hospitals also pick the same antichain A of contracts. Moreover, if there are some further choices

available that are represented by antichain Y and both the doctors and the hospitals are happy to

pick those (formally, if Y ⊆ CD(Li(A) ∪ Li(Y )) and Y ⊆ CH(Li(A) ∪ Li(Y ))) then

Li(Y ) ⊆ C∗
D
(Li(A) ∪ Li(Y )) ∩ C∗

H
(Li(A) ∪ Li(Y ))

⊆ U∗
D
(Li(A) ∪ Li(Y )) ∩ U∗

H
(Li(A) ∪ Li(Y ))

⊆ U∗
D
(Li(A)) ∩ U∗

H
(Li(A)) = Li(A).
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So Y ⊆ CD(Li(A) ∪ Li(Y )) = CD(Li(A)) = A. This means that we cannot add further choices to

A such that both the doctors and the hospitals will select them.

In the Hatfield-Milgrom model, A ⊆ X is a stable allocation if CD(A) = CH(A) = A and there

exists no hospital h and set of contracts X ′′ 6= Ch(A) with X ′′ = Ch(A ∪ X ′′) ⊆ CD(A ∪ X ′′).

Assume that A is a feasible allocation, that is, CD(A) = CH(A) = A and A′ 6⊆ A is a blocking

set: A′ ⊆ CD(A ∪ A′) and A′ ⊆ CH(A ∪ A′). This means that there is a hospital h that picks

a different assignment from A and from A ∪ A′. Let X ′′ = Ch(A ∪ A′) denote the choice of this

hospital h. Since X ′′ = Ch(A ∪ A′) ⊆ A ∪ X ′′ ⊆ A ∪ A′, we have X ′′ = Ch(A ∪X ′′). Because of

X ′′ ⊆ CD(A ∪ A′) and A = CD(A), each doctor in ∪x∈X′′D(x) has the same choice as in A ∪X ′′,

that is, X ′′ ⊆ CD(A ∪ X ′′). So X ′′ blocks A in the Hatfield-Milgrom sense. This proves that a

stable antichain of contracts in our framework with a trivial underlying partial order is a stable

allocation in the Hatfield-Milgrom framework. It is not difficult to see that the other direction is

also true: any stable allocation in the Hatfield-Milgrom framework is a stable antichain.

Example 3.10. (Example 3.7 continued) Assume that both doctors d and d′ want to work as many

days as possible, and that Cd and Cd′ are defined according to the preference. Obviously, Cd and

Cd′ are substitutable and path-independent. Then U∗
H
(Li(A)) = U∗

H
(L) = L1 and U∗

D
(Li(A)) =

U∗
D
(L) = L2 hold for

A = {x4, x
′
4
}, L = Li(A) = {x3, x4, x

′
3
, x′

4
},

L1 = {x3, x4, x
′
3
, x′

4
}, L2 = {x3, x4, x5, x

′
3
, x′

4
, x′

5
}.

As U∗
D
(L1) = L2, U

∗
H
(L2) = L1 and L1 ∩ L2 = L, it follows that (L1, L2) is a stable pair and A is

a stable antichain.

4 Main result

In this section, we prove our main results. Let X be a ground set and define partial order ⊑ on pairs

of subsets of X by (A,B) ⊑ (A′, B′) if A ⊆ A′ and B ⊇ B′ holds. It is clear that for any sublattice

L of (2X ,⊆), ⊑ defines a lattice on L×L with lattice operations (A,B)⊓(A′, B′) = (A∩A′, B∪B′)

and (A,B)⊔(A′, B′) = (A∪A′, B∩B′). The following theorem generalizes some results by Hatfield

and Milgrom in [8].

Theorem 4.1. Let X be a set of possible contracts between set D of doctors and H of hospitals

and let L be a complete sublattice of (2X ,⊆). Assume that joint choice functions C∗
D

of doctors

and C∗
H

of hospitals are substitutable. Then stable pairs form a nonempty complete lattice subset

of (L×L,⊑). In particular, there does exist a stable pair and there is a greatest and a lowest such

pair.

Moreover, if L = L(P ) is the lattice of lower ideals of some poset P = (X,¹) and both joint

choice functions CD and CH are substitutable and path-independent then ¹CD
and ¹CH

are opposite

partial orders on stable antichains and both of them define a lattice.

Note that the 2nd part of Theorem 4.1 generalizes the following well-known result of Blair on

the lattice structure of many-to-many stable matchings [4].

Corollary 4.2 (Blair [4]). If both doctors’ and hospitals’ choice functions are substitutable and

path-independent and moreover no two different contract is possible between the same doctor and
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hospital then ¹CD
and ¹CH

are opposite partial orders on stable assignments and both of them

define a lattice.

Proof of Theorem 4.1: Define mapping f : L×L → L×L by f(L1, L2) := (U∗
H
(L2), U

∗
D
(L1))

where U∗
D
and U∗

H
are the functions defined according to (3.2) from C∗

D
and C∗

H
. By definition, a pair

(L1, L2) is stable if and only if f(L1, L2) = (L1, L2). Assume that (L1, L2) ⊑ (L′
1
, L′

2
), i.e. L1 ⊆ L′

1

and L2 ⊇ L′
2
. Functions U∗

D
and U∗

H
are antitone by Observation 3.8, hence U∗

H
(L2) ⊆ U∗

H
(L′

2
)

and U∗
D
(L1) ⊇ U∗

D
(L′

1
), that is, f(L1, L2) ⊑ f(L′

1
, L′

2
) holds. This means that f is monotone on

complete lattice (L × L,⊑), hence its fixed points form a nonempty complete lattice subset of

(L × L,⊑) by Theorem 2.2 of Tarski. This proves the first part of Theorem 4.1.

To show the second part of Theorem 4.1 in the special case where L = L(P ) and choice functions

are path-independent, we prove that there is a natural bijection between stable pairs and stable

antichains in such a way that the partial order on stable antichains induced by the natural bijection

and partial order ⊑ coincides with both ¹CD
and ºCH

(the opposite of ¹CH
). As soon as we do

so, the second part of Theorem 4.1 immediately follows from the first one.

So assume that L = L(P ) and choice functions of doctors’ and hospitals’ are substitutable and

path-independent. Let (L1, L2) be a stable pair of lower ideals of P . Observe that

C∗
D(L1) = L1 ∩ U∗

D(L1) = L1 ∩ L2 = U∗
H(L2) ∩ L2 = C∗

H(L2)

so

A(L1, L2) := CD(L1) = CH(L2) = Max(L) (4.6)

is an antichain, where L := L1∩L2. From (4.6) and Observation 3.9 it follows that U∗
D
(Li(A(L1, L2))) =

U∗
D
(C∗

D
(L1)) = U∗

D
(L1) = L2 and similarly, U∗

H
(Li(A(L1, L2))) = U∗

H
(C∗

H
(L2)) = U∗

H
(L2) = L1,

hence U∗
D
(Li(A(L1, L2))) ∩ U∗

H
(Li(A(L1, L2))) = L1 ∩ L2 = Li(A(L1, L2)), so A(L1, L2) is indeed

stable.

Now assume that A is a stable antichain and define L := Li(A), L1 := U∗
H
(L) and L2 := U∗

D
(L).

We show that (L1, L2) is a stable pair such that A = A(L1, L2). By stability of antichain A, we

have that L = U∗
D
(L) ∩ U∗

H
(L). This means that L ⊆ U∗

D
(L), hence L = L ∩ U∗

D
(L) = C∗

D
(L)

and C∗
D
(L1) = L1 ∩ U∗

D
(L1) ⊆ L1 ∩ U∗

D
(L) = L1 ∩ L2 = L. This means that C∗

D
(L1) ⊆ L ⊆ L1,

and path-independence of C∗
D

implies that C∗
D
(L1) = C∗

D
(L) = L. Observation 3.9 yields that

U∗
D
(L1) = U∗

D
(L) = L2. A similar argument shows that U∗

H
(L2) = L1. We got that (L1, L2) is

indeed a stable pair, and moreover A(L1, L2) = Max(L1∩L2) = Max(U∗
H
(L)∩U∗

D
(L)) = Max(L) =

A.

To prove the existence of a natural bijection between stable pairs and antichains, we only have to

show that the stable pair we construct from A(L1, L2) according to the above paragraph is (L1, L2)

for any stable pair (L1, L2). Actually, this stable pair is (L′
1
, L′

2
) for L′

1
= U∗

H
(Li(A(L1, L2))) and

L′
2
= U∗

D
(Li(A(L1, L2))). We have seen that C∗

D
(L1) = Li(A(L1, L2)) = C∗

H
(L2), so Observation

3.9 implies that L1 = U∗
H
(L2) = U∗

H
(C∗

H
(L2)) = U∗

H
(Li(A(L1, L2))) = L′

1
and L2 = U∗

D
(L1) =

U∗
D
(C∗

D
(L1)) = U∗

D
(Li(A(L1, L2))) = L′

2
. This shows that there is indeed a natural bijection

between stable antichains and stable pairs.

To finish the proof by justifying the generalization of Theorem 4.2 by Blair, we show that

⊑ and the natural bijection induces a partial order that coincides with ¹CD
and ºCH

on stable

antichains. So assume now that (L1, L2) and (L′
1
, L′

2
) are stable pairs that correspond to stable

antichains A and A′, respectively. This means that L1 = U∗
H
(Li(A)), L2 = U∗

D
(Li(A)) and L′

1
=
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U∗
H
(Li(A′)), L′

2
= U∗

D
(Li(A′)) on one hand and Li(A) = L1 ∩ L2 = C∗

D
(L1) = C∗

H
(L2),Li(A

′) =

L′
1
∩ L′

2
= C∗

D
(L′

1
) = C∗

H
(L′

2
) on the other hand.

Assume first that (L1, L2) ⊑ (L′
1
, L′

2
), i.e. L1 ⊆ L′

1
and L2 ⊇ L′

2
. Consequently, (using

Lemma 3.5)

C∗
D(Li(A) ∪ Li(A′)) = C∗

D(C
∗
D(L1) ∪ C∗

D(L
′
1
)) = C∗

D(L1 ∪ L′
1
) = C∗

D(L
′
1
) = Li(A′)

and similarly

C∗
H(Li(A) ∪ Li(A′)) = C∗

H(C∗
H(L2) ∪ C∗

H(L′
2
)) = C∗

H(L2 ∪ L′
2
) = C∗

H(L2) = Li(A).

In other words, CD(A ∪A′) = A′ and CH(A ∪A′) = A, hence A ¹CD
A′ and A ºCH

A′.

Now suppose that A ¹CD
A′, that is, A′ = CD(A∪A′). This follows that Li(A′) = C∗

D
(Li(A)∪

Li(A′)). Observation 3.9 and the antitone property of U∗ yields that

L′
2
= U∗

D(Li(A
′)) = U∗

D(Li(A) ∪ Li(A′)) ⊆ U∗
D(Li(A)) = L2. (4.7)

As (L1, L2) and (L′
1
, L′

2
) are stable pairs, the antitone property of U∗

H
implies that

L1 = U∗
H(L2) ⊆ U∗

H(L′
2
) = L′

1
. (4.8)

From (4.7) and (4.8), (L1, L2) ⊑ (L′
1
, L′

2
) follows. A similar argument justifies that (L′

1
, L′

2
) ⊑

(L1, L2) holds whenever A ¹CH
A′ and this concludes our proof.

Theorem 4.1 points out a close connection between the notion of stability and fixed points

of a monotone function that always exist by Theorem 2.2 of Tarski. We have already indicated

that one can construct the maximal and minimal fixed points by iterating the monotone function

starting from the maximum or from the minimum element of the underlying lattice, respectively.

Probably, it was Fleiner in [5] who first pointed out that the well-known proposal algorithm of Gale

and Shapley that finds a man-optimal stable marriage scheme can be regarded as an iteration of

a certain monotone mapping. Later, the same observation was made by Hatfield and Milgrom for

a special case of Fleiner’s model. Actually, the same connection also holds in our present settings

that generalize both Fleiner’s and the Hatfield-Milgrom’s framework. The generalized Gale-Shapley

algorithm for finding a stable antichain works as follows.

Let us denote by 0 and 1 the minimal and maximal elements of L, respectively. It is straightfor-

ward to check that mapping f : L × L → L × L on lattice (L × L,⊑) defined by f(L1, L2) :=

(U∗
H
(L2), U

∗
D
(L1)) is monotone by the antitone property of U∗

D
and U∗

H
. Clearly, (L1, L2) =

(U∗
H
(L2), U

∗
D
(L1)) is a fixed point if and only if (L1, L2) is a stable pair, and in case of L = L(P ), it

is equivalent to Max(L1 ∩L2) is a stable antichain. So to find the maximal (doctor-optimal) stable

antichain, we only have to start to iterate f from the maximal element of L×L to get a ⊑-decreasing

sequence (1, 0) ⊒ f(1, 0) ⊒ f(f(1, 0)) ⊒ . . . . Hence after at most 2ℓ iterations (where ℓ denotes the

hight (the length of the longest chain) of poset L) we arrive to a fixed point and find the doctor-

optimal stable antichain AD. If we start the iteration from the bottom of the lattice L×L then the

⊑-minimal fixed point at the “end” of increasing sequence (0, 1) ⊑ f(0, 1) ⊑ f(f(0, 1)) ⊑ . . . repre-

sents the hospital-optimal stable antichain AH . According to Theorem 4.1 for any stable antichain

A we have AH ¹CD
A ¹CD

AD and AD ¹CH
A ¹CH

AH , so for example CD(Li(A ∪ AD)) = AD

and CH(Li(A∪AH)) = AH . This means that if doctors are offered all the choices that the contracts
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in some stable antichain represent or imply then from this choice set doctors pick contracts of AD,

and a similar property is true for the hospitals with respect to AH .

It seems that no one observed so far that the monotone function iteration is more powerful

than the Gale-Shapley algorithm itself that (in its original form) finds the man-optimal and (with

an exchanges of roles) the woman-optimal stable matchings. The iteration method can be used to

calculate the lattice operations on the fixed points of the monotone function. Consequently, we can

construct the ¹CD
-least and ¹CD

-greatest stable antichains that are the least upper and greatest

lower bounds of any given nonempty set of stable antichains. This works as follows: take stable

antichains A1, A2, . . . , Ak that correspond to stable pairs (L1,K1), (L2,K2), . . . , (Lk,Kk) and define

L :=
⋃

k

i=1
Li and K :=

⋂
k

i=1
Ki. By the antitone property of U∗

H
and U∗

D
we get

U∗
H
(K) = U∗

H
(
⋂

k

i=1
Ki) ⊃

⋃
k

i=1
U∗
H
(Ki) =

⋃
k

i=1
Li = L and

U∗
D
(L) = U∗

D
(
⋃

k

i=1
Li) ⊂

⋂
k

i=1
U∗
D
(Li) =

⋂
k

i=1
Ki = K,

so (L,K) ⊑ (U∗
H
(K), U∗

D
(L)) = f(L,K). Now monotonicity of f gives that (L,K) ⊑ f(L,K) ⊑

f(f(L,K)) ⊑ f(f(f(L,K))) . . . and at most 2ℓ iterations of f this ⊑-increasing sequence arrives

to the ⊑-least stable pair that is ⊑-greater than (L,K). This fixed point clearly corresponds to

the stable antichain that is the least upper bound of stable antichains A1, A2, . . . , Ak. A simi-

lar argument shows that for L′ :=
⋂

k

i=1
Li and K ′ :=

⋃
k

i=1
Ki we have (L′,K ′) ⊒ f(L′,K ′) ⊒

f(f(L′,K ′)) ⊒ f(f(f(L′,K ′))) ⊒ . . . and the “end” of this decreasing sequence corresponds to the

meet of stable antichains A1, A2, . . . , Ak.
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Abstract

We introduce the following optimization problem, called the weight-maximal matching prob-
lem. The input is a bipartite graph G = (A ∪ B,E) along with a family of weight functions
〈w1, . . . , wr〉 where wi : E → {0, 1, . . . ,W}, for 1 ≤ i ≤ r. Each weight function captures a
particular attribute (say, size, reward, compatibility, etc) and we have the following order among
these functions: w1 measures the most important attribute, the next most important attribute is
measured by w2, and so on, and at the end comes wr. Our problem is to compute a matching M
in G that captures the most important attribute optimally, subject to this constraint, M captures
the second most important attribute optimally, and so on, and finally, subject to the first r − 1
constraints, M captures the r-th attribute optimally.

This problem is an abstraction of several known variants of matching problems with preferences:
fair matching, rank-maximal matching, and maximum cardinality rank-maximal matching. We
present an iterative combinatorial algorithm whose running time is at least as good as or better
than the running times of algorithms to compute fair/rank-maximal/maximum cardinality rank-
maximal matchings. In addition, we show how to solve a generalized version of the weighted vertex
cover problem in bipartite graphs using a single-source shortest paths computation – this could be
of independent interest.

1 Introduction

Let G = (A∪B,E) be a bipartite graph, where each edge has several attributes associated with it. For
instance, these attributes might include quantities such as the weight of this edge, reward associated
with this edge, the compatibility of the endpoints of the edge, and so on. These attributes are captured
via edge weight functions w1, . . . , wr, where wi : E → {0, 1, . . . ,W}, for 1 ≤ i ≤ r. Thus wi(e) is a
measure of how well edge e fares with respect to the i-th attribute. We assume that W (the largest
edge weight) is a constant. These attributes are ordered in terms of importance as follows: attribute 1
(measured by w1) is the most important, next comes attribute 2 (measured by w2), and so on, and at
the very end comes attribute r (measured by wr).

A matching is a collection of edges, no two of which share an endpoint. The goal is to compute
a matching M in G such that M is optimal with respect to these r attributes as follows: M is a
maximum weight matching with respect to attribute 1, subject to this constraint, M is a maximum
weight matching wrt attribute 2, and so on, and finally subject to the first r − 1 constraints, M is a
maximum weight matching wrt attribute r. We call such a matching a weight-maximal matching.
The following definition will be useful.

Definition 1.1 For any matching M in G, let signature(M) be the r-tuple (w1(M), w2(M), . . . , wr(M)),
where for 1 ≤ i ≤ r, wi(M) is the weight of matching M under weight function wi, i.e., wi(M) =∑

e∈M wi(e).

∗This work was supported by IMPECS (the Indo-German Max Planck Center for Computer Science).
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The matching whose signature is lexicographically the best is the weight-maximal matching. So
if M is such a matching, then we have signature(M) � signature(M ′), for all matchings M ′, where
� is the lexicographic order on signatures. The weight-maximal problem is an abstraction of several
matching problems whose objectives can be reformulated in this setting. Thus, if we can solve the
abstract version of these problems, then we effectively propose a unified scheme for solving many
related problems. We now give concrete examples of weight-maximal matchings.

Matching with Preferences.

Let G = (A∪B,E) be a bipartite graph where each vertex in A∪B ranks its neighbors in an order of
preference, possibly involving ties. The set A can be viewed as a set of applicants and the set B can
be viewed as a set of jobs, where each applicant a has a ranking (with ties allowed) over the jobs that
a is interested in and similarly, each job b has a ranking (with ties allowed) over the applicants that
b is interested in. Thus, each edge e = (a, b) ∈ E is associated with two values, one is the ranking of
a for b and the other is the ranking of b for a. This is the same as an instance of the stable marriage
problem with incomplete lists and ties [6, 7].

The focus in the stable marriage problem is to find matchings that are stable. However, there are
many applications where stability is not a proper objective. Rather we seek matchings that satisfy
several optimality criteria. For instance, in assigning summer internships to interns, there is a global
authority who seeks to maximize the size of the resulting matching, subject to this constraint, then may
seek to maximize the “value” of the matching in terms of matching vertices to highly-valued neighbors,
then may seek to maximize the number of women matched, and so on. Another example is in assigning
counselors to students, where the global authority again seeks a maximum cardinality matching that
minimizes the number of “incompatible” pairs. We summarize below three such optimality criteria
that have been studied so far. Let r be the largest or worst rank used by any vertex.

Definition 1.2 A matching M in G is said to be

• rank-maximal: if M matches the maximum number of vertices to rank 1 neighbors, and subject
to that, M matches the maximum number of vertices to rank 2 neighbors, and so on.

• maximum cardinality rank-maximal: if M is a maximum cardinality matching, and subject to
that, M is rank-maximal.

• fair: if M leaves the minimum number of vertices unmatched1, and subject to that, M matches the
minimum number of vertices to rank r neighbors, and subject to that, M matches the minimum
number of vertices to rank (r − 1) neighbors, and so on.

Rank-maximal/fair/maximum cardinality rank-maximal matchings have several applications: for
instance, when assigning counselors to students, a fair matching fits the bill of the desired matching
since the matching is of maximum cardinality, and subject to this, as few people as possible are matched
to their rank r neighbors, subject to this, as few people as possible are matched to their rank (r − 1)
neighbors, and so on. Similarly, when assigning summer internships to interns, a maximum cardinality
rank-maximal matching fits the bill of a desired matching since here we seek a maximum cardinality
matching that matches as many vertices as possible to their topmost choice, subject to this, matches
as many vertices as possible to their second best choice, and so on. Also, here one may seek a

1Note this is the same as saying M has to be of maximum cardinality.
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maximum cardinality rank-maximal matching that satisfies additional properties, for instance, one
that maximizes the number of women being matched.

These three matching problems with preferences have been studied when vertices on only one side
of the bipartite graph have preferences [12, 13, 14, 16, 17]. In fact, Irving [12] originally referred
to rank-maximal matchings with one-sided preferences as weight-maximal matchings. It is rather
surprising that the above problems in the context of 2-sided preferences have never been addressed so
far (though the technique of Mehlhorn and Michail [16] for 1-sided preferences can be generalized to
the 2-sided preferences setting—see the discussion below).

It is easy to see that these three matching problems are special cases of weight-maximal matchings.
Let the total number of ranks used be r. Note that rank 1 is the top choice while rank r is the worst
choice.

• Rank-Maximal Matching: create r weight functions w1 to wr. For any edge e = (a, b), for
1 ≤ i ≤ r, define wi(e) as follows: it is 2 if both a and b rank each other as rank i neighbors, it
is 1 if exactly one of {a, b} ranks the other as a rank i neighbor, otherwise it is 0.

• Maximum Cardinality Rank-Maximal Matching: create weight functions w1 up to wr+1. The
function w1 is for the “cardinality” of the matching: thus w1(e) = 1 for all e ∈ E. For 2 ≤ i ≤
r+ 1, define wi(e) as follows: it is 2 if both a and b rank each other as rank (i− 1) neighbors, it
is 1 if exactly one of {a, b} ranks the other as a rank (i− 1) neighbor, otherwise it is 0.

• Fair Matching: create weight functions w1 up to wr. As in the preceding case, the function w1

is for the cardinality of the matching: thus w1(e) = 1 for all e ∈ E. For any 2 ≤ j ≤ r, define
wj(e) as follows: it is 2 if both a and b rank each other as rank ≤ r − j + 1 neighbors, it is 1 if
exactly one of {a, b} ranks the other as a rank ≤ r − j + 1 neighbor, otherwise it is 0.

Our Results and Technique.

Though the weight-maximal matching problem specifies a family of weight functions 〈w1, . . . , wr〉, in
order to compute a weight-maximal matching, we can effectively reduce all these weights into a single
weight function as follows. We assign a weight of

∑r
j=1wj(e)n

2(r−j) to the edge e. It is not difficult to
see that the maximum weight matching in the reduced problem is also the weight-maximal matching
in the original problem and vice versa.

However the above brute-force approach can be expensive even if we use the fastest maximum-
weight bipartite matching algorithms [1, 2, 4, 5]. The running time will be O(rmn) or O(r2

√
nm log n)

where n = |A∪B| and m = |E|. (These complexities follow from the customary assumption that each
arithmetic operation has constant cost on numbers of magnitude O(n).)

Mehlhorn and Michail [16] showed that with the same reduction, by a more sophisticated imple-
mentation of the Gabow-Tarjan scaling algorithm [5], a weight-maximal matching can be found in
O(r
√
nm log n) time.2 Their algorithm maintains “reduced” edge costs and it is known that if the

reduced cost of any edge becomes 8n or more, then such an edge may as well be deleted. Thus the re-
duced costs are always O(n) and the Gabow-Tarjan scaling algorithm takes O(r

√
nm log n) time here.

Rather than using scaling, here we present an iterative combinatorial algorithm for the weight-maximal
matching problem. We show the following result.

2The Mehlhorn-Michail algorithm was originally designed for matching problems with one-sided preferences. The com-
plexity of O(r

√
nm logn) is for fair/rank-maximal/maximum cardinality rank-maximal matchings. But their algorithm

can be generalized to solve our weight-maximal matching problem with the same time complexity.
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Theorem 1.3 A weight-maximal matching M in G = (A∪B,E) can be computed in O(r∗
√
nm log n)

time, or in Õ(r∗nω) time with high probability, where r∗ ≤ r is the largest index such that wr∗(M) is
strictly positive, n = |A ∪B|, m = |E|, and ω ≈ 2.37 is the exponent of matrix multiplication.

Thus our running times improve the running time of the Mehlhorn-Michail algorithm, in particular
when the graph is relatively dense, i.e., when m = Ω(n1.88). We note that as the Mehlhorn-Michail
algorithm is based on the Gabow-Tarjan scaling algorithm, it seems unlikely that one can replace the
term

√
nm with nω in its running time—we are not aware of such scaling algorithms.

Note that for matching problems with preferences, the above complexity implies that we can find a
rank-maximal or maximum cardinality rank-maximal matching in O(r∗

√
nm log n) time, or in Õ(r∗nω)

with high probability, where r∗ is the worst rank used in the solution. For fair matchings, we achieve
the same running time with some preprocessing. Note that for one-sided preferences, a rank-maximal
matching can be computed in O(min(r∗

√
nm,mn)) time [13].

Theorem 1.4 A rank-maximal/maximum cardinality rank-maximal/fair matching in G = (A∪B,E)
with 2-sided preference lists, can be computed in O(r∗

√
nm log n) time, or in Õ(r∗nω) time with high

probability, where r∗ ≤ r is the worst rank used in the solution, n = |A ∪B|, and m = |E|.

We also show the following structural result.

Theorem 1.5 When our algorithm terminates, we show a subgraph G′ of G and a subset V ′ ⊆ A∪B
such that M is a weight-maximal matching in G if and only if M is a matching in G′ that matches
all vertices in V ′.

Our algorithm is based on linear programming duality and is combinatorial in nature, i.e., we do
not rely on any scaling used in the Gabow-Tarjan algorithm. Our algorithm is iterative and in each
iteration, we solve a variant of the maximum weight matching problem and its dual. The dual problem
that we solve in the i-th iteration is the following.

Generalized minimum weighted vertex cover problem. Let Gi = (A∪B,Ei) be a bipartite
graph with edge weights given by wi : E → {0, 1, . . . ,W}. Let Ki−1 ⊆ A∪B. Find a cover {yiu}u∈A∪B
so that

∑
u∈A∪B y

i
u is minimized subject to the following conditions: (1) for each e = (a, b) ∈ Ei,

yia + yib ≥ wi(e), and (2) yiu ≥ 0 if u 6∈ Ki−1.

When Ki−1 = ∅, then the above problem reduces to the original weighted vertex cover problem. We
show that the generalized minimum weighted vertex cover problem can be solved using a single-source
shortest paths subroutine in directed graphs, by a non-trivial extension of a technique of Iri [11].

Organization of the paper. We discuss preliminaries in Section 2. Section 3 has the algorithm for
finding a weight-maximal matching. Section 4 has an efficient algorithm for solving the generalized
minimum weighted vertex cover problem.

2 Preliminaries

Let OPT denote a weight-maximal matching. So signature(OPT) � signature(M ′) for all matchings
M ′ in G, where � is the lexicographic order on signatures. For any matching M and 1 ≤ j ≤ r, let
signaturej(M) denote the j-tuple obtained by truncating signature(M) to its first j coordinates.

Definition 2.1 A matching M is j-optimal if signaturej(M) = signaturej(OPT).
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Our algorithm is iterative and it computes a (j−1)-optimal matching Mj in the j-th iteration. Our
algorithm runs for r∗ + 1 iterations, where r∗ ≤ r is the largest index such that the r∗-th coordinate
of signature(OPT) is positive. Thus if wr(OPT) > 0, then r∗ = r, otherwise r∗ < r.

For every 1 ≤ j ≤ r∗ + 1, our algorithm maintains the (j − 1)-optimality of Mj as follows. Let Gj
be the graph in the j-th iteration. We maintain a critical set Kj−1 ⊆ A∪B at the end of the (j−1)-st
iteration and Mj will be a maximum wj-weight matching in Gj under the constraint that all vertices
of Kj−1 have to be matched in Mj . We will show that this ensures the (j − 1)-optimality of Mj .

The problem of computing Mj can be expressed as a linear program (rather than an integer
program) as the constraint matrix is totally unimodular and hence the corresponding polytope is
integral. The problem of computing Mj will be referred to as the primal program of the j-th iteration.
This linear program and its dual are given below. (Let δ(v) be the set of edges incident on vertex v.)

max
∑
e∈E

wj(e)x
j
e∑

e∈δ(v)

xje ≤ 1 ∀v ∈ A ∪B

∑
e∈δ(v)

xje = 1 ∀v ∈ Kj−1

xje ≥ 0 ∀e in Gj .

min
∑
v∈V

yjv

yja + yjb ≥ wj(e) ∀e = (a, b) in Gj

yjv ≥ 0 ∀v ∈ (A ∪B) \Kj−1.

Proposition 2.2 Mj and yj are the optimal solutions to the primal and dual programs respectively,
iff the following hold:

1. if u is unmatched in Mj (thus u has to be outside Kj−1), then yju = 0;

2. if e = (u, v) ∈Mj, then yju + yjv = wj(e);

Proposition 2.2 follows from the complementary slackness conditions in the linear programming
duality theorem. This suggests the following strategy once the primal and dual optimal solutions Mj

and yj are found in the j-th iteration.

• to prune “wrong” edges: if e = (u, v) and yju + yjv > wj(e), then no optimal solution of the j-th
iteration primal program can contain e. So we prune such edges from Gj and let Gj+1 denote
the resulting graph. The graph Gj+1 will be used for the (j + 1)-st iteration.

• to grow the critical set Kj−1: if yju > 0 and u 6∈ Kj−1, then u has to be matched in every optimal
solution of the primal program of the j-th iteration. Hence u should be added to the critical set.
Adding such vertices u to Kj−1 yields the critical set Kj for the (j + 1)-st iteration.

3 Our main algorithm

We first present our algorithm that runs for r iterations, where r is the total number of weight
functions. In case there is an r∗ such that wj(OPT) = 0 for all r∗ + 1 ≤ j ≤ r, we then show how to
terminate our algorithm in r∗ + 1 iterations.

1. Initialization. Let G1 = G and K0 = ∅.
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2. For j = 1 to r do

(a) Let Mj be a maximum wj-weight matching in Gj subject to the constraint that all vertices
in Kj−1 are matched (thus Mj is primal optimal).

(b) Find an optimal solution {yju}u∈A∪B to the dual program.

(c) Every edge (a, b) such that yja+yjb > wj(e) is pruned from Gj . Call the pruned graph Gj+1.

(d) Add all vertices with positive dual values to the critical set. That is, Kj = Kj−1 ∪{u}yju>0
.

3. Return the matching Mr.

We now prove the correctness of our algorithm in Lemma 3.2. First we need to show that there
is always a feasible solution for the primal program of the j-th iteration and its dual, so that our
algorithm is never “stuck” in Steps 2(a) and 2(b).

Lemma 3.1 The primal program of the j-th iteration and its dual are feasible, for 1 ≤ j ≤ r.

Proof. By linear programming duality, if the primal program of the j-th iteration is bounded from
above and admits a feasible solution, then there is also a feasible solution for its dual. It is obvious
that the primal program is bounded from above since it is upper bounded by

∑
e∈E wj(e) ≤ Wm.

Therefore, to prove this lemma, we just need to show the feasibility of the primal program.
The base case is j = 1. Since Kj−1 = ∅, any matching in G1 = G is a feasible solution for the first

primal program. For j > 1, we need to show that the primal program of the j-th iteration is feasible.
By induction hypothesis, assume that the primal program of the (j − 1)-st iteration is feasible. Let
Mj−1 denote its optimal solution. Since Mj−1 is a feasible point of the primal program of the (j−1)-st
iteration, Mj−1 uses only edges in Gj−1 and matches all vertices in Kj−2. Since Mj−1 is, in fact, an
optimal solution to the primal program of the (j − 1)-st iteration, we will show that Mj−1 has to be
a feasible point of the primal program of the j-th iteration by arguing that Mj−1 does not use any of
the edges pruned from Gj−1 and all vertices in Kj−1 are matched in Mj−1.

In step 2(c) of the (j−1)-st iteration, we remove only those edges e = (a, b) such that yj−1a +yj−1b >
wj−1(e) from Gj−1 to form Gj . By the optimality of Mj−1, we know from Proposition 2.2.2 that Mj−1
has no slack edges, thus all edges in Mj−1 are retained in Gj .

We also know from Proposition 2.2.1 that if yj−1u > 0, then u must be matched in Mj−1. Therefore,
all vertices in Kj−1\Kj−2 are matched in Mj−1. Moreover, as Mj−1 is also a feasible solution in the
(j − 1)-st primal program, all vertices in Kj−2 are matched in Mj−1. This completes the proof of
Lemma 3.1.

2

Lemma 3.2 For every 0 ≤ j ≤ r, the following hold:

1. any matching M in Gj+1 that matches all vertices in Kj is j-optimal;

2. conversely, a j-optimal matching in G is a matching in Gj+1 that matches all vertices in Kj.

Proof. We proceed by induction. The base case is j = 0. As K0 = ∅, G1 = G, and all matchings
are, by definition, 0-optimal, the lemma holds vacuously.

For the induction step j > 1, suppose that the lemma holds up to j − 1. As Kj ⊇ Kj−1 and Gj+1

is a subgraph of Gj , M is a matching in Gj that matches all vertices of Kj−1. Thus by induction
hypothesis, M is (j − 1)-optimal. For each edge e = (a, b) ∈ M to be present in Gj+1, e must be a

tight edge in the j-th iteration, i.e., yja + yjb = wj(e). Furthermore, as Kj ⊇ {u}yju>0
, we have
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wj(M) =
∑

e=(a,b)∈M

wj(e) =
∑

e=(a,b)∈M

yja + yjb ≥
∑

u∈A∪B
yju,

where the final inequality holds because all vertices v with positive yjv are matched in M . By linear
programming duality, M must be optimal in the primal program of the j-th iteration. So the j-th
primal program has optimal solution of value wj(M).

Recall that by definition, OPT is also (j − 1)-optimal. By (2) of the induction hypothesis, OPT
is a matching in Gj and OPT matches all vertices in Kj−1. So OPT is a feasible solution of the
primal program in the j-th iteration. Thus wj(OPT) ≤ wj(M). However, it cannot happen that
wj(OPT) < wj(M), otherwise, signature(M) � signature(OPT), since both OPT and Mj have the
same first j − 1 coordinates in their signatures. So we conclude that wj(OPT) = wj(M), and this
implies that M is j-optimal as well. This proves (1).

In order to show (2), let M ′ be a j-optimal matching in G. Note that since M ′ is j-optimal, it
is also (j − 1)-optimal and by (2) of the induction hypothesis, it is a matching in Gj that matches
all vertices in Kj−1. So M ′ is a feasible solution to the primal program of the j-th iteration. As
signature(M ′) has wj(OPT) in its j-th coordinate, M ′ must be an optimal solution to this primal
program; otherwise there is a (j − 1)-optimal matching with a value larger than wj(OPT) in the j-th
coordinate of its signature, contradicting the optimality of OPT. What remains to be shown is that
all edges of M ′ are present in Gj+1 and all vertices in Kj \ Kj−1 are matched in M ′. The former
fact follows from Proposition 2.2.2: the optimal solution M ′ uses only tight edges. For the latter fact,
note that by Proposition 2.2.1, all vertices u 6∈ Kj−1 with yju > 0 have to be matched by the optimal
solution M ′. This completes the proof of (2). 2

Combining Lemma 3.1 and Lemma 3.2.1, we conclude that Mr is an r-optimal matching. This
implies that Mr is a weight-maximal matching, since signature(M) = signature(OPT). Lemma 3.2.2
yields Theorem 1.5 by setting G′ to be Gr+1 and V ′ to be Kr.

We now discuss how to modify our algorithm so that it ends in r∗ + 1 iterations, rather than in r
iterations, in case there is an r∗ such that wj(OPT) = 0 for all r∗ + 1 ≤ j ≤ r. Insert the following
step right before Step 2(a).

Step 2(0): Define the graph G′j as follows: the edge set is exactly the same as in Gj ;
however the edge weight function w′j is as follows. For each edge e in G′j: set w′j(e) = 1 if∑r

i=j wi(e) > 0, else set w′j(e) = 0.

– Now find a maximum weight matching M ′j in G′j so that all the vertices in Kj−1 are
matched. If the weight of M ′j is 0, then return Mj−1 as the final solution.

Lemma 3.3 The following claims hold:

(1) If the matching M ′j has weight 0, then Mj−1 is a weight-maximal matching.

(2) If r∗ is the largest index such that signature(OPT) is positive in this coordinate, then in Step 2(0)
of the j-th iteration where j = r∗ + 1, the matching M ′j has weight 0.

Proof. We first show (1). Suppose w′j(M
′
j) = 0. Since all edge weights are non-negative, we

claim that any matching M in Gj that matches all vertices of Kj−1 must have wj(M) = wj+1(M) =
· · · = wr(M) = 0, otherwise, w′j(M) > 0, a contradiction to the assumption that the maximum weight
matching M ′j in G′j satisfies w′j(M

′
j) = 0.
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As a result, both Mj−1 and OPT have 0 in the last r− j + 1 coordinates in their signatures, since
Mj−1 (by its optimality in Gj−1) and OPT (by Lemma 3.2.2) are matchings in Gj that match all
vertices of Kj−1. By Lemma 3.2.1, Mj−1 is (j−1)-optimal. Hence signature(Mj−1) = signature(OPT),
thus Mj−1 is weight-maximal and (1) is proved.

We prove (2) by contradiction. Suppose that w′j(M
′
j) > 0, where j = r∗+1. Since M ′j is a matching

in Gj that matches all vertices in Kj−1, signature(M
′
j) � signature(OPT); hence by Lemma 3.2.1, M ′j

is r∗-optimal and while OPT has only 0 in its last r − r∗ coordinates, M ′j has some positive values in
its last r − r∗ coordinates. This is a contradiction to the optimality of OPT.

2

In fact, based on the proof of Lemma 3.3, it follows that if w′j(M
′
j) = 0, then any (j − 1)-optimal

matching is weight-maximal. By Lemma 3.2, the graph Gr∗+1 is the subgraph G′ and the subset Kr∗

of vertices is the critical set V ′ stated in Theorem 1.5.
We now show that our algorithm has running time as claimed in Theorem 1.3. Each iteration,

barring Steps 2(0), 2(a) and 2(b), can be done easily in O(m) time. In the next section, we show how
to solve the primal program in O(

√
nm log n) time, the dual in O(

√
nm) time, or both in Õ(nω) time

with high probability. Thus Theorem 1.3 follows.

Rank-maximal/maximum cardinality rank-maximal/fair matchings. It is now straightfor-
ward to see that rank-maximal matchings and maximum cardinality rank-maximal matchings can be
computed in time O(r∗

√
nm log n) or Õ(r∗nω) with high probability, as promised in Theorem 1.4.

However for fair matchings, a little more work is needed because we need to know the value of r∗

(the worst rank used in a fair matching) right at the beginning: we will need to use weight functions
w1, . . . , wr∗ , where for 1 ≤ i ≤ r∗, wi is defined as: for any edge e = (a, b), wi(e) is 2 if both a and b
rank each other as rank ≤ r∗− i+ 1 neighbors, it is 1 if exactly one of {a, b} ranks the other as a rank
≤ r∗ − i+ 1 neighbor, otherwise it is 0.

The value r∗ can be easily computed right at the start of our algorithm as follows. Let M∗ be a
maximum cardinality matching in G. The value r∗ is the smallest index j such that the subgraph Ḡj
admits a matching of size |M∗|, where Ḡj is obtained by deleting all edges e = (a, b) from G where
either a or b (or both) ranks the other as a rank > j neighbor. We compute r∗ by first computing M∗

and then computing a maximum cardinality matching in Ḡ1, Ḡ2, . . . and so on till we see a subgraph
Ḡj that admits a matching of size |M∗|. This index j = r∗ and it can be found in O(r∗

√
nm) time [10]

or in O(r∗nω) time [9, 18]. Thus Theorem 1.4 follows.

4 Solving the primal and dual programs

Let Gj = (A∪B,Ej) be the subgraph that we work with in the j-th iteration and let Kj−1 ⊆ A∪B be
the critical set of vertices in the j-th iteration. Recall that for each e ∈ Ej , we have wj(e) ∈ {0, · · · ,W}.

The primal program can be solved by the following folklore technique: create a new graph G̃j by
taking two copies of Gj and making the two copies of a vertex u /∈ Kj−1 adjacent using an edge of
weight 0. A maximum weight perfect matching in G̃j yields a maximum weight matching in Gj that
matches all vertices in Kj−1, i.e., an optimal solution to the primal program of the j-th iteration.
Note that since W is some constant, a maximum weight perfect matching in G̃j can be found in
O(
√
nm log n) time by the fastest bipartite matching algorithms [1, 2, 5], or in Õ(nω) time with high

probability by Sankowski’s algorithm [20].

Let Mj be the optimal solution of the primal program. We now discuss how to use it to solve the
dual program. Our idea is built upon that of Iri [11] (who solved the special case of Kj−1 = ∅). Recall
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that if any vertex v is unmatched in Mj , then v 6∈ Kj−1.

• Add a new vertex z to A and let A′ = A ∪ {z}. Add an edge of weight 0 from z to each vertex
in B \Kj−1. For convenience, we call the edges from z to these vertices “virtual” edges. Note
that after this transformation, Mj is still the optimal feasible solution.

[As there can be only O(n) virtual edges, the time complexity is not changed when later we
apply the single-source shortest-paths algorithm.]

• Next direct all edges e ∈ Ej \Mj from A′ to B and let the distance d(e) = −wj(e); also direct
all edges in Mj from B to A′ and let the distance d(e) = wj(e).

• Create a source vertex s and add a directed edge from s to each unmatched vertex in A′ \Kj−1.
Let R denote the set of all vertices reachable from s.

Lemma 4.1 By the above transformation,

(1) B \Kj−1 ⊆ R.

(2) There is no edge between A′ ∩R and B \ R.

(3) Mj projects on to a perfect matching between A′ \ R and B \ R.

Proof. (1) holds because there is a directed edge from s to z and directed edges from z to every
vertex in B \Kj−1. To show (2), it is trivial to see that there can be no edge from A′ ∩ R to B \ R
(by the definition of B \ R). If there is an edge (b, a) from B \ R to A′ ∩ R, then this has to be an
edge in Mj and hence it is a’s only incoming edge. So for a to be reachable from s, it has to be the
case that b is reachable from s, contradicting that b ∈ B \R.

For (3), observe that if b ∈ B \ R is unmatched in Mj , then b 6∈ Kj−1 and such a vertex can be
reached via z, contradicting the assumption that b ∈ B \ R. If a ∈ A′ \ R is unmatched in Mj , then
such a vertex can be reached from s, contradicting the assumption that a ∈ A′ \ R. So all vertices in
(A′ ∪B) \R are matched in Mj . By (2), a vertex b ∈ B \R cannot be matched to vertices in A′ ∩R.
If a vertex a ∈ A′ \R is matched to a vertex B ∈ R, then a is also in R, a contradiction. This proves
(3).

2

Note that there may exist some edges in Ej\Mj that are directed from A′\R to B∩R. Furthermore,
some vertices of A \Kj−1 can be contained in A \ R.

Delete all edges from A′ \R to B∩R from Gj ; let Hj denote the resulting graph. By Lemma 4.1.3,
no edge of Mj has been deleted, thus Mj belongs to Hj . Note that Mj is still the optimal matching
in the graph Hj . Moreover, Hj is split into two parts: one part is (A′ ∪B)∩R, which is isolated from
the second part (A′ ∪B) \ R.

Next add a directed edge from the source vertex s to each vertex in B \ R. Each of these edges e
has distance d(e) = 0. By Lemma 4.1.3, all vertices can be reached from s now. Also note that there
can be no negative-length cycle, otherwise, we can augment Mj along this cycle to get a matching of
larger weight while still keeping the same set of vertices matched, which leads to a contradiction to
the optimality of Mj .

Apply the single-source shortest paths algorithm [8, 19, 20, 21] from the source vertex s in this
graph Hj where edge weights or edge distances are given by d(·). Such algorithms take O(

√
nm) time

or Õ(nω) time. Let dv be the distance label of vertex v ∈ A′ ∪B.
We define an initial vertex cover as follows. If a ∈ A′, let ỹa := da; if b ∈ B, let ỹb := −db. (We

will adjust this cover further later.)
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Lemma 4.2 The constructed initial vertex cover {ỹv}v∈A′∪B for the graph Hj satisfies the following:

(1) For each vertex v ∈ ((A ∪B) ∩R) \Kj−1, ỹv ≥ 0.

(2) If v ∈ (A ∪B) \Kj−1 is unmatched in Mj, then ỹv = 0.

(3) For each edge e = (a, b) ∈ Hj, we have ỹa + ỹb ≥ wje.
(4) For each edge e = (a, b) ∈Mj, we have ỹa + ỹb = wje.

Proof. For (1), suppose that a ∈ (A ∩ R) \ Kj−1 and ỹa < 0. By Lemma 4.1.2 and the fact
that all edges from A′ \ R to B ∩ R are absent, the shortest path from r to a cannot go through
(A ∪ B) \ R. So there exists an alternating path P (of even length) starting from some unmatched
vertex a′ ∈ (A′∩R)\Kj−1 and ending at a. The distance from a′ to a along path P must be negative,
since da = ỹa < 0. Therefore, ∑

e∈Mj∩P
we <

∑
e∈P\Mj

we.

Note that it is possible that the first edge e = (a′, b) ∈ P is a virtual edge, i.e., a′ = z and the first
edge e connects z to some vertex b ∈ (B ∩ R) \Kj−1. In this case, such an edge has distance de = 0
and b is not part of the critical set Kj−1. Therefore, irrespective of whether the first edge is virtual or
not, we can replace the matching Mj by Mj ⊕ P (ignoring the first edge in P if it is virtual), thereby
creating a feasible matching with larger weight than Mj , a contradiction.

So we are left to worry about the vertex b ∈ (B ∩ R) \ Kj−1. Recall that ỹb = −db. We claim
that db ≤ 0. Suppose not. Then the shortest distance from s to b is strictly larger than 0. But this
cannot be, since there is a path composed of edges (s, z) and (z, b), and such a path has total distance
of exactly 0. This completes the proof of (1).

To show (2), by Lemma 4.1.3, an unmatched vertex must be in R. First, assume that this
unmatched vertex is a ∈ (A ∩ R) \ Kj−1. By our construction, there is only one path from s to a,
which is simply the directed edge from s to a and its distance is 0. So ya = da = 0. Next assume
that this unmatched vertex is b ∈ (B ∩ R) \ Kj−1. Suppose that ỹb > 0. Then db = −ỹb < 0. By
Lemma 4.1.2 and the fact that all edges from A′ \ R to B ∩ R have been deleted, the shortest path
from s to b cannot go through (A ∪B) \ R. So the shortest path from s to b must consist of the edge
from s to some unmatched vertex a ∈ (A′ ∩ R) \ Kj−1, followed by an augmenting path P (of odd
length) ending at b. As in the proof of (1), we can replace Mj by Mj ⊕P (irrespective of whether the
first edge in P is virtual or not) so as to get a matching of larger weight while preserving the feasibility
of the matching, a contradiction. This proves (2).

For (3) and (4), first consider an edge e = (a, b) outside Mj in Hj . Such an edge is directed from

a to b. So ỹa − wje = da + d(e) ≥ db = −ỹb. This proves (3). Next consider an edge e = (a, b) ∈ Mj .
Such an edge is directed from b to a. Furthermore, e is the only incoming edge of a, implying that e
is part of the shortest path tree rooted at s. As a result, −ỹb +wje = db + d(e) = da = ỹa. This shows
(4). This completes the proof of Lemma 4.2. 2

Modifying the initial vertex cover. At this point, we possibly still do not have a valid cover for
the dual program due to the following two reasons.

• Some vertex a ∈ A\Kj−1 has ỹa < 0. (However there is no worry that some vertex b ∈ B \Kj−1
has ỹb < 0, since Lemma 4.1.1 states that such a vertex is in R and Lemma 4.2.1 states that ỹb
must be non-negative.)
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• The edges deleted from Gj (to form Hj) are not properly covered by the initial vertex cover
{ỹv}v∈A∪B.

We can remedy these two defects as follows. Define δ = max{δ1, δ2} as follows,

where δ1 = max
e=(a,b): ỹa+ỹb<w

j
e

{wje − ỹa − ỹb} and δ2 = max
a∈A\Kj−1: ỹa<0

{−ỹa}.

In O(n + m) time, we can find such a δ or conclude that the initial vertex cover is already a
valid solution for the dual program. In the following, we assume that δ exists (if the initial cover is
already a valid solution for the dual program, then the proof that it is also optimal is just the same
as Theorem 4.3.) We build the final vertex cover as follows.

1. For each vertex u ∈ (A ∪B) ∩R, let yu = ỹu;

2. For each vertex a ∈ A \ R, let ya = ỹa + δ;

3. For each vertex b ∈ B \ R, let yb = ỹb − δ;

Theorem 4.3 The final vertex cover {yv}v∈A∪B is an optimal solution for the dual program.

Proof. We first argue that {yv}v∈A∪B is a feasible dual solution. By Lemma 4.2.1 and the choice
of δ, all vertices a ∈ A\Kj−1 have ya ≥ 0. By Lemma 4.1.1 and Lemma 4.2.1, all vertices b ∈ B \Kj−1
have yb ≥ 0. Also by Lemma 4.1.2 and Lemma 4.2.3, and the choice of δ, all edges in Ej are properly
covered. So {yv}v∈A∪B is feasible.

Now observe that

wj(Mj) =
∑
e∈Mj

wje =
∑

e=(a,b)∈Mj , b∈R

ỹa + ỹb +
∑

e=(a,b)∈Mj , b 6∈R

(ỹa + δ) + (ỹb − δ)

=
∑

e=(a,b)∈Mj

ya + yb

≥
∑

u∈A∪B
yu,

where the last inequality holds because if a vertex u is unmatched, Lemma 4.2.2 states that ỹu = 0
and since u must be in R, we have yu = ỹu = 0.

Now by the linear programming duality theorem, we conclude that the cover {yv}v∈A∪B is optimal.
2

We thus conclude that the dual problem can be solved in time O(
√
nm) or Õ(nω) in each iteration.
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Linear time local approximation algorithm for maximum stable

marriage

Zoltán Király∗

Abstract

We consider a two-sided market under incomplete preference lists with ties, where the goal
is to find a maximum size stable matching. The problem is APX-hard, a 3/2-approximation
was given by McDermid [M 2009]. This algorithm has non-linear running time, and, more
importantly needs a global knowledge about all preference lists.

We give a very natural, economically reasonable, local, linear time algorithm with the same
ratio, using some ideas of Paluch [P 2010]. In this algorithm every people make decisions using
only their own list, and some information asked from members of this lists (like during the
famous algorithm of Gale and Shapley).

Some consequences to the Hospitals/Residents problem are also discussed.

Keywords: stable marriage, Gale-Shapley algorithm, approximation, Hospitals/Residents prob-
lem.

1 Introduction

In 1962 Gale and Shapley [GS 1962] gave their famous simple deferred acceptance algorithm, that
always finds a stable matching in a two-sided market. If incomplete lists and ties are allowed in the
preference lists, their algorithm is still working, and gives some stable matching. However in this
case we are usually interested in not only finding some stable matching, but one with maximum
size. This problem (usually called MAX-SMTI) is APX-hard, and probably cannot be approximated
within factor of 4/3. McDermid [M 2009] gave the first 3/2-approximation. In this paper we give a
much simpler algorithm than he gave, which is only a slight modification of the historical algorithm
of Gale and Shapley. This also gives 3/2-approximation, but in linear time. The proof of the
approximation ratio is uncomplicated, thus it serves as a good example for teaching purposes.

In this paper we make difference between global and local algorithms. When we speak about
a global algorithm, we assume that there is a centralized decision mechanism, having all possible
information (the preference list of all participants). A global algorithm is called linear if the number
of steps it takes is some constant times the size of the input (usually the total length of the preference
lists).

A local algorithm is quite restricted compared to a global algorithm. Here every participant
must have his/her own algorithm and no global information is available. Besides his/her own
information, a participant can only ask information from his/her acceptable partners. In this
model we assume everyone has his/her own list sorted at the beginning, and a local algorithm

∗Department of Computer Science and MTA-ELTE Egerváry Research Group, Eötvös University, Pázmány Péter
sétány 1/C, Budapest, Hungary. Research was supported by grants (no. CNK 77780 and no. CK 80124) from the
National Development Agency of Hungary, based on a source from the Research and Technology Innovation Fund,
and by TÁMOP grant 4.2.1./B- 09/1/KMR-2010-0003.
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called linear if the number of steps any participant needs is some constant times the size of the
input (length of the preference list) of that particular participant.

We will give both linear-time global and linear-time local algorithms for approximating the
maximum size stable marriage problem, moreover in our local algorithm every participant of the
two-sided market will make only very natural, economically reasonable decisions.

An instance of the stable marriage problem consists of a set U of men, a set W of women, and
a preference list for each person, that is a weak linear order (ties are allowed) on some participants
(thus, in this paper, we are dealing with only the practical situation of incomplete lists) of the
opposite gender. If m ∈ U and w ∈ W , then a pair mw is called acceptable if m is on the list of w
and w is on the list of m. We model acceptable pairs with a bipartite graph G = (U,W,E), (where
E is the set of acceptable pairs; we may assume that if w is not on the list of m then m is also
missing from the list of w). Note, that total length of the lists is proportional to |E|. A matching
in this graph consists of mutually disjoint acceptable pairs.

We store the weak order of the lists as priorities. For an acceptable pair mw, let pri(w, m) be
an integer from 1 up to |U | representing the priority of m for w. We say that w ∈ W strictly prefers
m1 ∈ U to m2 ∈ U if both m1 and m2 are acceptable for w, and pri(w, m1) > pri(w, m2). Ties are
represented by equal priorities, e.g., if m1 and m2 are tied in w’s list, then pri(w, m1) = pri(w, m2).
We will later break up some ties, dividing the men in a tie into two groups, and we will say, that w
prefers one group to the other. So there will be a case, that w prefers m1 to m2, but not strictly
prefers, and in this situation we mean that pri(w, m1) = pri(w, m2), but m1 is in the preferred
group and m2 is not. If both of them are in the same group then we say m1 and m2 are alike for
w.

We define pri(m, w) similarly, of course, pri(m,w) is not related to pri(w, m). We represent these
priorities in the figures by writing pri(m,w) and pri(w, m) close to the corresponding endvertex of
edge mw (pri(m,w) is written next to m, while pri(w, m) is written next to w). For a man m we
will modify his list in either of two ways. Sometimes we delete a woman from the list. Sometimes
(at a given point, when his list is empty) we will restore the original list of m. We mean by “favorite
woman” of m, the mostly preferred woman still on m’s list; if there are more alike women on the
top of the list, we choose one of them arbitrarily.

Remark. The author apologizes that the text of this paper is not PC. Just like the one of Gale
and Shapley [GS 1962], or the phrases used in many other papers on this topic. It would indeed be
possible to change the terminology, but we find this approach pretty well-mannered.

Let M be a matching. If m is matched in M , or in other words, if m is engaged then we denote
m’s fiancée by M(m). Similarly we use M(w) for the fiancé of an engaged woman w.

Definition 1 A pair mw is blocking M , if mw ∈ E \M (they are an acceptable pair and they are
not matched) and

• w is either not engaged or w strictly prefers m to her fiancé, and
• m is either not engaged or m strictly prefers w to his fiancée.

Definition 2 A matching is called stable if there is no blocking pair.

While there may be objections to the connotations of these words, for simplicity we use the
term “lad” to represent a man who still has some women on his list, whom he did not propose to
so far, and we use the term “old bachelor” to represent a man who was refused by all acceptable
women and decides to become inactive forever. Moreover we use the term “maiden” to represent
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a woman who did not get any proposal so far. Later we need to use some other similar terms,
defined there.

It is well-known that a stable matching always exists and can be found in linear time. The
celebrated algorithm of Gale and Shapley [GS 1962] is the following.

A man can either be a lad or an old bachelor. A lad can either be active or engaged. A woman
can either be maiden or engaged. At the beginning every man is an active lad and every woman is
a maiden.

Algorithm GS

While there exists an active man m, he proposes to his favorite woman w. If w accepts his
proposal, they become engaged. If w refuses him, m will delete w from his list, and will remain
active.
When a woman w gets a new proposal from man m, she always accepts this proposal, if she is
a maiden. She also accepts this proposal, if she prefers m to her current fiancé. Otherwise she
refuses m.
If w accepted m, then she refuses her previous fiancé, if there was one (breaks off her engage-
ment), and becomes engaged to m.
If a man m was engaged to a woman w, and later w refuses him, then m becomes active again,
and deletes w from his list.
If the list of m becomes empty, he will turn into an old bachelor and will remain inactive forever.

After Algorithm GS finishes, the engaged pairs make up the output matching M (we may
imagine that this time all the engaged pairs get married).

Theorem 1 (Gale and Shapley [GS 1962]) Algorithm GS always ends in a stable matching
M . This algorithm runs in O(|E|) time.

An interesting problem, motivated by applications, is to find a stable matching of maximum
size. As the applications of this problem are important (see e.g., in [IM 2007, IM 2008], where
detailed lists of known and possible applications are given, that motivate investigating refined
approximations), researchers started to develop good approximation algorithms in the past six
years. We say that an algorithm is r-approximating, if it gives a stable matching M with size
|M | ≥ (1/r) · |Mopt|, where Mopt is a stable matching of maximum size. Observe, that after a
run of GS no unmarried man and unmarried woman can form an acceptable pair. Consequently
Algorithm GS gives a 2-approximation, and for complete bipartite graphs (every woman-man pair
is acceptable), it gives the optimum. The first non-trivial approximation algorithm was given by
Halldórsson et al. [HIMY 2007], where they gave a 13/7-approximation if all ties are of length
two. The breakthrough was achieved by Iwama, Miyazaki and Yamauchi [IMY 2007], who gave
a 15/8-approximation (for any length of ties). This was later improved by Irving and Manlove
[IM 2007] to a 5/3-approximation for the special case, where ties are allowed on one side only,
and moreover only at the ends of the lists. Their algorithm also applies to the Hospitals/Residents
problem (see later) if residents have strictly ordered lists. If, moreover, ties are of size 2, Halldórsson
et al. [HIMY 2007] gave an 8/5-approximation and in [HIMY 2004] they described a randomized
algorithm for this special case with expected ratio of 10/7.
This problem is known to be NP-hard for even very restricted cases [IMMM 1999, MIIMM 2002].
Moreover, it is APX-hard [HIIMMMS 2003] and, supposing P6=NP, it cannot be approximated
within a factor of strictly less than 21/19, even if ties occur in the preference lists on one side only,
furthermore, if every list is either totally ordered or consists of a single tied pair [HIMY 2007].
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Moreover, refining the ideas of [HIMY 2007], Yanagisawa [Y 2007] proved, that an approximation
within a factor of 4/3−ε implies (2−ε′)-approximation of vertex cover, and this result also applies
to the case when each tie has length two. If, moreover, ties occur only in the preference lists on
one side only, it was proved in [HIMY 2007], that an approximation within a factor of 5/4−ε has
the same implication. We note that interestingly the minimization version (where we are looking
for a stable matching of minimum size) is also APX-hard [HIIMMMS 2003].

We proposed a simple linear-time 5/3-approximating algorithm (called GSA2) for the general
case of this problem, first presented at the first MATCH-UP workshop (see in [K1 2008, K2 2008,
K 2009]), and at the same time, an even simpler 3/2-approximation (called GSA1) was given for
the special case where ties are allowed on one side only. For this algorithm, the proof was also very
short, see Section 2. This is also valid for the practically important “Hospitals/Residents” problem,
where the lists of the Residents are strict, see Section 5.

During the talks given at the 1st MATCH-UP workshop in Reykjav́ık and at ESA in Karlsruhe,
we posed several questions, conjectures and open problems. Many of them were answered in the
meanwhile.

The conjecture stating that the performance ratio proved for GSA2 is sharp proved to be true
by Yanagisawa [Y 2008], who gave a simple example where GSA2 really gives a matching of size
exactly 3

5 ·Mopt.
Irving and Manlove [IM 2009] implemented a basic version of our algorithm for the one-sided-ties

Hospitals/Residents problem and gave a detailed comparison with their best heuristic (which is not
a local algorithm, it needs some max-flow computation on an auxiliary graph). They tested carefully
the algorithms with real-life and artificial data. They concluded that for the most cases their best
heuristic executed the best, but, on the average, our algorithm also gave a stable assignment of size
at least 99.41% of their best one. We do not know too many other examples, where an algorithm
with a guaranteed approximation ratio is so close in the practice to the best known heuristic.

For the one-sided-ties case, Iwama, Miyazaki, and Yanagisawa [IMY 2010] gave a 25/17 ≈ 1.47-
approximation. They solved the relaxed version of an appropriate ILP formulation, and used the
fractional optimum to guide the tie-breaking process. Besides this, their algorithm is similar to
GSA1, but the analysis is much deeper. Of course, as they have to solve an LP, it gives non-
linear running time, and needs global information, so does not yield a local algorithm. However we
consider this result important, they could break the 3/2-barrier.

We had a conjecture given forth in Reykjav́ık [K1 2008], stating that a simple modification and
repetition of GSA2 gives 3/2-approximation for the general problem. It was (partially) answered
by McDermid [M 2009], who gave the first 3/2-approximation for the general case. He used GSA1
(and not GSA2), but not with simple repetitions, at some points he stopped the main algorithm,
constructed an auxiliary graph, and solved a maximum matching problem on it. In short, he used
novel and rather complicated techniques, and so his algorithm needs O(n

√
n|E|) running time

(where n = |U |+ |W |), and his algorithm also needs global information, so cannot be converted to
a local algorithm.

Recently Paluch [P 2010]1 gave a new 3/2-approximation algorithm for the general case, claim-
ing (without a proof) a linear running time. Her algorithm was still quite complicated, uses many
concepts, and the analysis was also lengthy. It was not shown that her algorithm is local, but it
can really be converted to a linear-time local algorithm with some more efforts, like as in Section
4.

1Parallel to this work she made significant simplifications, and after releasing the technical report version
[K-tech 2011] of our algorithm, she made some further changes, see the newest version of Paluch’s algorithm in
[P 2011].
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In Section 2 we reformulate Algorithm GSA1 of [K1 2008, K2 2008, K 2009], then in Section
3 we give a simple linear-time 3/2-approximation, with a simple proof of correctness. We lean on
two important ideas of Paluch. Our new algorithm is a slightly modified version of GSA1 given in
the next section, thus it is also very reminiscent of the traditional Algorithm GS. In Section 4 we
detail how our new algorithm can be implemented to run in linear time, both for the global and
the local version. Finally, in Section 5 we reformulate this algorithm for the Hospitals/Residents
problem.

2 Men have strictly ordered lists

In this section we suppose that the lists of men are strictly ordered. From now on a man can be a
lad, a bachelor or an old bachelor, where we use the term “bachelor” for a man who was refused
by all acceptable women once, but in this setup he remains active and starts again to propose every
woman on his recovered list. If there are two men, m1 and m2 with the same priority on a woman
w’s list, and m1 is a lad but m2 is a bachelor, then w prefers bachelor m2 to lad m1. In the
description of the algorithm, differences from Algorithm GS are set in boldface.

Algorithm GSA1

While there exists an active man m, he proposes to his favorite woman w. If w accepts his
proposal, they become engaged. If w refuses him, m will delete w from his list, and will remain
active.
When a woman w gets a new proposal from man m, she always accepts this proposal, if she is
a maiden. She also accepts this new proposal, if she prefers m to her current fiancé. Otherwise
she refuses m.
If w accepted m, then she refuses her previous fiancé, if there was one (breaks off her engage-
ment), and becomes engaged to m.
If m was engaged to a woman w and later w refuses him, then m becomes active again, and
deletes w from his list.
If the list of m becomes empty for the first time, he turns into a bachelor, his original
list is recovered, and he reactivates himself. If the list of m becomes empty for the
second time, he will turn into an old bachelor and will remain inactive forever.

This simple algorithm runs in O(|E|) time, as there are at most 2|E| proposals altogether2. It
is easy to see that Algorithm GSA1 gives a stable matching M .

Theorem 2 (2008) If men have strictly ordered preference lists, M is the output of Algorithm
GSA1 and Mopt is a maximum size stable matching then |Mopt| ≤ 3

2 · |M |.

Proof. Take the union of M and Mopt. We consider common edges as a two-cycle. Each component
of M ∪Mopt is either an alternating cycle (of even length) or an alternating path. An alternating
path component is called augmenting path if both end-edges are in Mopt. An augmenting path is
called short, if it consists of 3 edges (see Figure 1). It is enough to prove that in each component
there are at most 3/2 times as many Mopt-edges as M -edges. This is clearly true for each component
except for a short augmenting path.

We claim that a short augmenting path cannot exist. Suppose that M(m) = w, Mopt(m) =
w′ 6= w, Mopt(w) = m′ 6= m and that m′ and w′ are single in M . Observe first that w′ is a maiden,

2but see Section 4 for the details
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3, 5, 6: priorities (example)

Figure 1: A short augmenting path

thus she never got a proposal during Algorithm GSA1. Consequently m is a lad, who prefers w to
w′. As the algorithm finished, m′ is an old bachelor, so he proposed to w also as a bachelor (see
Figure 1), but w preferred m to m′. Consequently w strictly prefers m to m′. However, in this case
edge mw blocks Mopt, a contradiction. 2

3 The new algorithm for general stable marriage

For the new algorithm we use the following terms, most of which are familiar to the reader. A
man can either be a lad, or a bachelor, or an old bachelor. A lad or a bachelor can either be active
or engaged. If women w1 and w2 have the same priority on m’s list, and w1 is maiden but w2 is
engaged, then m prefers maiden w1 to engaged w2. An engaged man is uncertain, if his list
contains a woman he prefers to his actual fiancée (this can happen, if there were two maidens with
the same highest priority on m’s list, and m became engaged to one of them).

A woman can either be maiden or engaged. An engaged woman is flighty, if her fiancé is
uncertain. If there are two men, m1 and m2 with the same priority on a woman w’s list, and m1

is a lad, but m2 is a bachelor, then w prefers bachelor m2 to lad m1.
At the beginning every man is a lad and every woman is a maiden. In the description of the

algorithm, differences from GSA1 are set in boldface.

New Algorithm

While there exists an active man m, he proposes to his favorite woman w. If w accepts his
proposal, they become engaged. If w refuses him, m will delete w from his list, and will remain
active.
When a woman w gets a new proposal from man m, she always accepts this proposal, if she is a
maiden or a flighty engaged woman. She also accepts this proposal, if she prefers m to her
current fiancé. Otherwise she refuses m.
If w accepted m, then she refuses her previous fiancé, if there was one (breaks off her engage-
ment), and becomes engaged to m.
If m was engaged to a woman w and later w refuses him, then m becomes active again, and
deletes w from his list, except if m is uncertain, in this case m keeps w on the list.
If the list of m becomes empty for the first time, he turns into a bachelor, his original list is
recovered, and he reactivates himself. If the list of m becomes empty for the second time, he
will turn into an old bachelor and will remain inactive forever.

After the algorithm finishes, the engaged pairs get married and form matching M .
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Lemma 1 When a woman gets the first proposal, she becomes engaged, and will never become
maiden again. A woman can become flighty only after the first proposal she got. After the second
proposal a woman can never be flighty. If a woman changes her fiancé, then she always prefers the
new fiancé to the previous one, except if she was flighty, when she may refuse a preferred man, but
in this case she remains on the refused man’s list.

Proof. The only statement that needs a proof, is that after getting the second proposal a woman
w cannot be flighty. However, in this case she got the last proposal as an engaged woman, so
either she kept her first fiancé, consequently she was not flighty, or her new fiancé m could not be
uncertain. (If there is a maiden w′ on the list of m with the same priority as w, then m would
prefer w′ to w, so he would propose to w′ first.) 2

Lemma 2 The matching M given by the new algorithm is stable.

Proof. For suppose mw is a blocking pair. If w is maiden then she did not get any proposals, so
m did not reach her when he processed his list, consequently he is engaged to a preferred woman
w′ (though it can be the case, that w′ is flighty and now m would prefer w to w′, but he does not
strictly prefer her, so pair mw cannot be blocking).

If m is not married then he is an old bachelor, consequently he proposed to w at least twice.
By the previous lemma the priority of the fiancé of woman w is monotonically increasing after the
second proposal she got. So the husband of w cannot be strictly less preferred than m.

Finally suppose both m and w are married, the wife of m is w′, and the husband of w is m′.
As pair mw is blocking, m strictly prefers w to w′, so m also proposed to w and she refused him.
If at the time of this refusal w was not flighty, then she got finally a husband not worse than m. If
she was flighty that time, then she remained on the list of m, so m proposed to her again before
w′. In all cases we came to a contradiction. 2

Lemma 3 There is no short augmenting path.

Proof. Suppose m′wmw′ is a short augmenting path (see Figure 1). The algorithm finished, so
m′ is an old bachelor, but m is a lad, because w′ remained a maiden. As Mopt is a stable matching,
edge mw does not block it, so either w does not strictly prefer m to m′, or m does not strictly
prefer w to w′. In the second case – as w′ was always a maiden – after m proposed to w and got
engaged to her, he became uncertain, thus w became flighty. It is impossible that later w refuses
m, because after this m would propose to the preferred maiden w′ before he proposes again to w.
So w remained flighty until the end, meaning that she got only one proposal, but this is impossible,
because m′ proposed to her twice.

Assume w does not strictly prefer m to m′. Observe, that when m becomes a bachelor, he
has no maidens on his recovered list, consequently an uncertain bachelor cannot exist. Take the
moment, when m′ proposed to w as a bachelor. If w refused m′ at this time, then she was not
flighty, because a flighty woman never refuses a proposal. Thus by Lemma 1, husband m of w is
not less preferred, but this is a contradiction, as a woman prefers bachelors to lads. 2

These lemmas together with the next section give:

Theorem 3 The new algorithm always gives a stable matching in linear time for the general prob-
lem, and is 3/2-approximating.
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4 Implementation and running time

If the reader is not interested in implementation details and having truly linear-time algorithms, it
is advised to skip this section.

The original Algorithm GS is thought to be a linear-time local algorithm by its definition, but
that is not obvious at all, as when getting a proposal from a man m, a woman w must look up
in some dictionary, what is the value of pri(w, m). In order to implement Algorithm GS as a
linear-time local algorithm, we first assume that the lists of men are sorted (this assumption can
be weakened to requiring that the priorities are natural numbers not exceeding the length of the
list, because in this case a man can do bucket (or counting) sort in linear-time), and moreover we
have to make any one of following assumptions.

• The system is “wired” along acceptable pairs, which means here that when a man m sends a
proposal to a woman w, she sees on which wire this call is coming in, and the priority pri(m,w)
is written on that wire. Or, equivalently, better fitting to our mobile phone centralized world,
there are no wires, but when an accessible man m calls woman w, then not only his phone
number (his index in U) is shown, but also his position in the phone-book of w, such that his
index in w’s array.

• Women can through dice, and so they can use the perfect hashing approach of [FKS 1984].

• Women has a black-box procedure, which on input m outputs in constant time pri(w, m).

• Men has some extra knowledge, for each acceptable woman w they know their own position
in the list of w, such that their index in w’s array.

Remark. Gusfield and Irving in [GI 1989] made a stronger assumption, the existence of ranking
arrays. For complete preference lists it is still equivalent to the above assumptions.

Here we may assume any of these assumptions, but we will concentrate (and use) the fourth
one, because that fits the best in our description of the algorithm. To make the new algorithm
linear-time and local, we must define the communication between acceptable pairs, as well as the
data structure needed for the participants. In our local implementation of the new algorithm all
men run the same algorithm, as well as all women.

First we describe the algorithm of an arbitrary woman w. She stores 3 non-changing arrays,
her own status (maiden or engaged), and if she is engaged then she also stores the name, priority
and status of her fiancé. The first array Uw contains all the acceptable men in arbitrary order of
priorities. The second array PRw contains the corresponding priorities at w. The third array Iw

stores the relative positions, such that if w is in the ith position in the list of man Uw(j) then
Iw(j) = i (this list is initialized at the beginning with accepting messages from men).

Woman w gets proposals in the form (m, i, status(m)), where status(m) can be one of lad or
bachelor, and i is the index in w’s array Uw where she stores m. If w is maiden and gets a proposal
from man m then she changes her status to engaged, she stores (m,pri(w, m), status(m)), and she
tells all the men in her list about her new status (engaged), together with her index stored in Iw.
If she later gets a proposal from man m′ then she first asks his fiancé m, whether he is uncertain.
Now she has all the information needed to make a decision, she stores the name, priority and status
of the new fiancé, and she sends the message “refused” to the non-preferred man.

An algorithm of a man m is slightly more complicated due to continuous reordering needed in
his list, and the fact that he must always know whether he is uncertain. He stores 3 non-changing
arrays (see bellow), a changing Boolean array Bm, a dequeue (double-ended queue), two pointers,
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the number Pm of preferred women (relative to his fiancée) and his status (originally lad). The first
array Wm contains all the acceptable women in non-increasing order of priorities. The second array
PRm contains the corresponding priorities at m. The third array Im stores the relative positions,
such that if m is in the ith position in the list of woman Wm(j) then Im(j) = i (by our assumption
these are known at the beginning). He keeps Bm(j) =True, if Wm(j) is a maiden, and False
otherwise. This array is initialized to all-True, and an item is changed to False, when he gets
the corresponding message from a woman.

The first pointer fm points to the first woman of the current tie, and the second one nm points
to the first woman on m’s list, who has (strictly) lower priority than fm. At the beginning, for
all acceptable women w = Wm(j), man m sends a message (m, i, j) to w, where i = Im(j) (and
woman w stores Iw(i) = j). When m is a lad, he considers the first woman on his list, fm points
to her (such that fm = 1), and remember her priority p. He scans his list until finding a woman
with lower priority than p, and changes nm pointing to this woman (if he reaches the end of the list
then he define nm = ∞). While scanning he checks every woman w whether she is a maiden. If yes
then he puts w in front of his dequeue, else (if w is engaged) he puts w at the end of his dequeue.
Meanwhile he counts the maidens in the dequeue and stores this number in Pm. Whenever he gets
a message “engaged” and has to change the corresponding value of Bm, he also checks whether the
sender is in the dequeue (such that for her index j we have fm ≤ j < nm), and if yes, then he
decreases Pm. Whenever he is asked whether he is uncertain, he returns yes, if and only if Pm > 0.
Then he takes the first element out of the dequeue, and proposes to this woman.

Whenever man m gets a refusal from w, he first checks whether Pm > 0, if yes, he puts back w
at the end of the dequeue, and he takes the first element out of the dequeue and checks whether
she is a maiden. If this is not the case then he puts back this woman at the end of his dequeue,
and takes the next one from the front. Otherwise he proposes to this woman.

Otherwise, if Pm = 0 then he checks whether the dequeue is empty. If not then he simply takes
the first woman from the dequeue and proposes to her.

When the dequeue is empty, he rather proceeds as follows. He changes fm to nm and starting
from this new fm he makes a new dequeue the same way as above (calculating Pm meanwhile), and
adjust his pointer nm. Then he processes the new dequeue as above. If fm = ∞ at the first time
then he changes his status to bachelor, and reset fm to 1. If fm = ∞ at the second time then he
changes his status to old bachelor, and finishes.

From this local algorithm the linear-time global algorithm also follows easily, only we have to
get rid of our assumptions. This can be done using the famous linear-time radix sort, as follows.
First we sort triplets of form (pri(m,w),m, w) for all acceptable pairs mw (this set of triplets can
be collected from men). After sorting we scan this list, and build up the sorted arrays Wm of men
easily.

Next every woman w subscribe each quadruplet (m,w, 0, i) to the center, where i is the index
of man m in w’s list. And every man m subscribe each quadruplet (m,w, j, 0) to the center, where
j is the index of woman w in m’s list. The center sorts these quadruplets and fuses neighboring
pairs getting a list of quadruplets (m,w, j, i), and stores Im(j) = i.

After these detailed descriptions it is obvious that both the local and the global algorithms run
in linear-time.

5 Generalizations to the Hospitals/Residents problem

It is well-known, that algorithms for the one-to-one model can be easily converted to corresponding
algorithms (for example, by cloning) for the many-to-one problems (see e.g., [K 2009]). This new
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algorithm can be also generalized to the many-to-many model, but we leave this generalization to
the full version, so here we only detail the many-to-one case, because of the great importance and
many practical usage of this model.

In the Hospitals/Residents problem, (also called Colleges/Students problem, and by many other
names) the roles of women are played by hospitals and the roles of men are played by residents.
Moreover, each hospital w has a positive integer capacity c(w), the number of free positions. Instead
of matchings, we consider assignments, that is a subgraph F of G, such that all residents have degree
at most one in F , and each hospital w has degree at most c(w) in F . For a resident m who is
assigned, F (m) denotes the corresponding hospital. For a hospital w, F (w) denotes the set of
residents assigned to it. We say that hospital w is full if |F (w)| = c(w), and otherwise under-
subscribed. Here a pair mw is blocking, if mw ∈ E \ F (they are an acceptable pair and they are
not assigned to each other) and

• m is either unassigned or pri(m,w) > pri(m,F (m)), and
• w is either under-subscribed or pri(w,m) > pri(w,m′) for at least one resident m′ ∈ F (w).

An assignment is stable if there is no blocking pair.

First we consider the case when ties can only reside on hospitals lists. In [K1 2008, K2 2008,
K 2009] it was shown, that if the preference lists of residents are strictly ordered then an easy
modification of GSA1 (called HRGSA1) gives a 3/2-approximation in linear time. If we consider
the resident-proposal version of the new algorithm, we can observe, that as there are no ties on the
resident’s side, no uncertain resident exists, consequently the new algorithm runs equivalently to
HRGSA1. This algorithm is the same as that of Gale and Shapley with only one modifications: if
a resident is refused by all hospitals for the first time, he/she gets an extra score of a half point
(raising the priority by one half at every hospital; the same effect, as when a man becomes a
bachelor), the list is recovered, reactivates himself/herself and starts making applications from the
beginning of his/her list.

However the new algorithm makes possible to run the Hospital-proposal version as well. It will
also give now a 3/2 approximation, and expectedly it results in a stable assignment that is better
for the hospitals than the result of the resident-proposal scheme. This statement should be tested
by some empirical future work. From now on hospitals play the role of men and residents play the
role of women. We detail this algorithm below.

At the beginning all hospitals have the sorted list of its applicants. A hospital w prefers resident
m to resident m′, if m has strictly higher priority, or they have the same priority (pri(w,m) =
pri(w,m′)) and m′ has got some offer, but m has not. A hospital w is active, if it is under-
subscribed, in this case f(w) denotes the number of free places (capacity minus the number of
non-refused offers it made). In this case it makes an offer to the favorite resident on its list. A
hospital m is uncertain about the offer for m, if there is a resident m′ still on its list, whom it
prefers to m.

A resident m is either unoffered or offered, if offered, he/she is called precarious, if his/her
current offer is uncertain. A resident always accepts an offer, if either he/she is unoffered, or he/she
is precarious, or if the new offer is better for him/her than the previous one.
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Hospital-proposing Algorithm

While there exists an active hospital w, it offers to his favorite resident m. If m refuses this
offer, w will delete m from its list, and will remain active.
When a resident m gets a new offer from hospital w, he/she always accepts this offer, if he/she
is unoffered or precarious. He/she also accepts this offer, if he/she prefers w to the hospital
he/she is actually assigned. Otherwise he/she refuses w.
If resident m accepted w, then he/she refuses his/her previous offer, if there was one.
If hospital w had offered to resident m and later m refuses it, then w deletes m from its list,
except if m was precarious, in this case w keeps m on the list.
If the list of hospital w becomes empty then it remains inactive forever.

After the algorithm finishes, the assignment is made along the non-refused offers.
Similarly to Section 4, this algorithm can also be implemented as a linear-time local or global

algorithm, we leave the details to the full version.
Unfortunately these algorithms do not give better approximation ratio than HRGSA1. We

think that no linear time local algorithm can give better approximation ratio than 3/2.
Needless to say that our two algorithms (the Resident-proposal and the Hospital-proposal ones)

equipped with the full machinery of the new algorithm, also can give a 3/2-approximation, when
we allow ties on both sides. This also has some applications (for example, when residents have no
preferences, only a list of acceptable hospitals). The only change we have to make, that after the
list of a hospital gets empty the first time, it should become to an advantaged hospital, and starts
proposing from its recovered list. And naturally, if for a resident m two hospitals are originally
alike, then he/she prefers the advantaged one.
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Strong stability in contractual networks and matching markets

Alexander Teytelboym

†

1 Introduction

Matching markets and networks are omnipresent in economic activity.1 A network is a structure
of connections between agents. A social network can describe friendships and a research network
can show how firms collaborate on research and development (R&D). A two-sided matching market,
however, consists of two types of heterogeneous agents - firms and workers, doctors and hospitals,
or financiers and inventors - who have preferences over productive matches with agents of the other
type. Matching markets can be one-to-one (where one inventor may be matched to one financier),
many-to-one (where a financier may match with several inventors, but an inventor may match
with only one financier) or even many-to-many (where several inventors may match with several
financiers). Here we will consider multilateral matching markets where the same set of agents may
form contracts to participate in separate ventures (Teytelboym (2012) illustrates this).

Although networks and matching markets have a common graph-theoretic structure (a network
is essentially a one-sided matching market), the two concepts are addressed in separate literatures.
Yet there is key theme in both literatures: stability. Understanding stability is crucial to predicting
what network or matching is most likely to form. Here we focus on a stability concept, which allows
for arbitrary group deviations from a particular contract allocation. In particular, we will say that
a network or contract allocation in the matching market (a ‘matching’ if there are no contracts) is
strongly stable if no group of agents can deviate, drop some of their contracts, form new contracts
among themselves, and as a result all be made strictly better off. The main advantage of using
this stability concept is that if a matching or a network is strongly stable then we can expect this
contract allocation will persist.

The network and matching literatures approach the question of stability differently. Network
theorists attempt to find conditions for the ways in which agents can allocate divisible surplus on
the network. Matching theorists deal with allocation of indivisible objects (such as contracts) so
they impose conditions on the individual preferences of agents, which guarantee a stable matching.
The most important such condition, called ‘substitutability’, was introduced by Kelso and Crawford
(1982). The following example illustrates this concept. Suppose a venture capitalist (V C) faces two
inventors A and B and ideally she would fund both. Now suppose inventor B goes bankrupt and is
no longer available. We say that the V C’s preferences are substitutable if she would still be willing
to fund inventor A. A large literature (discussed below) shows that in order to ensure stability

†Department of Economics, University of Oxford. I owe an enormous debt of gratitude to my supervisor Vincent
Crawford for his patience, guidance, and support. I would also like to thank Marek Pycia, Francis Dennig, and the
discussants at the Nuffield College Learning, Games and Networks workshop for their comments. Please email any
comments to alexander.teytelboym@economics.ox.ac.uk

1Roth and Sotomayor (1990) offer an excellent treatment of the classic results in matching theory. Jackson (2008)
and Goyal (2009) present recent surveys of the networks literature.
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A. Teytelboym

in any matching market the preferences of agents on both sides of the market (i.e. preferences of
the V C and the inventors) must be substitutable. Yet substitutability is a rather strong condition
on individual preferences. It would rule out the following case: the V C still wants to fund both
projects, but when inventor B drops out, she wants to fund neither. This could be because the
V C now regards inventors A and B as complementary: the technologies they developed are only
marketable when sold together. Without substitutability stable matchings often cease to exist.
However, even if agents’ preferences are substitutable, but they care about agents on their side of
the market (‘peer effects’), stable matchings are no longer guaranteed (see example 2.1 in Echenique
and Yenmez (2007)). In our example, if inventor B wants to work with the V C as long as the V C

does not fund inventor A, peer effects will be present. Preferences over agents on the same side
of the market can be viewed as a type of externality. The prevalence complementarities and peer
effects in matching markets and networks is illustrated by the following examples.

Knowledge spillovers and complementarities in production networks

As economies grow and specialize, they exhibit more complements in production and more
substitutes in consumption. In The Wealth of Nations Adam Smith estimated that in a pin factory
ten specialized workers produced 4,800 pins a day each, whereas any one of them working alone
would produce:

certainly, not the two hundred and fortieth, perhaps not the four thousand eight
hundredth part of what they are at present capable of performing, in consequence of
a proper division and combination of their different operations (Smith (1776), Book 1,
Chapter, 1)

Modern production of sophisticated technology involves assembly of various complementary compo-
nents, which may be manufactured by different firms around the world.2 Ostrovsky (2008, p. 914)
notes that:

In some industries (e.g., construction), firms along supply chains combine several
complementary inputs to produce final goods, with inputs themselves consisting of mul-
tiple complementary parts, many of them heterogeneous, complex, and an important
part of the final cost of the outputs.

When firms innovate and specialize, their technologies “spill over” as their competitors imitate
and improve them. Hence, firms may make their R&D decisions strategically depending on their
position in the production network (Baker et al., 2008). Venture capital funds exploit these features
of modern technologies by providing complementary inputs of capital and managerial experience
across a portfolio of start-ups, which are encouraged to share each other’s technologies (Hellman,
1998). The way profits are divided among collaborating firms is crucial for stability of alliances.

2For example, Bloomberg reported in March 2011 that the Japanese earthquake “meaningfully impaired” Apple
Inc’s California-based assembly of consumer electronics. (Bloomberg, 29 March 2011, “Apple’s Production of iPads
and iPhones May Be Hurt by Japan Earthquake” by Ian King and Adam Satariano)
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Strong stability in contractual networks and matching markets

Peer effects in schools and organisations

Peer effects are ubiquitous in many organisational networks and matching markets. Academics
do not simply pick the university that offers the highest salary - they care about how prolific the
other members of the department are. Parents want to make sure that at school their children are
surrounded by good peers. Workers in a firm may be assigned to work simultaneously in several
teams. They want to pick the tasks that give them the highest chance of promotion, but, other
things being equal, they prefer to be in a team with friendly colleagues. Complementarities and
peer effects are often present simultaneously in organisations. No football team can win without a
goalkeeper and no goalkeeper wants to play for a team without a good defender.

The current literature offers only partial solutions to the problem of existence of strongly stable
matchings and networks when complementarities and externalities are present. The contribution of
the present paper is twofold. First, we present a necessary and sufficient condition for the formation
of strongly stable networks. The condition, called strong pairwise alignment, states that for any
two networks, preferences of agents who are members of every contract on both networks must be
identical. This condition subsumes and extends known sufficient conditions for strong stability on
networks and allows for complementarities and externalities.

We then apply our results to a multilateral matching market with finite contracts. We demon-
strate that if contractual language is sufficiently fine (e.g. agents can specify contractual terms
sufficiently finely to accommodate any pattern of strict preferences), then strong pairwise alignment
is also necessary and sufficient for strongly stable allocation in multilateral matching markets. This
challenges some recent results in matching theory and shows that a) substitutability of preferences
is not necessary for a strongly stable matching and b) stable matchings are not preserved whenever
contractual language becomes more coarse. The rest of this paper is organised as follows. Section
2 presents the networks model and gives two motivating examples. Section 3 extends this to a
multilateral matching market model with finite contracts. Section 4 concludes. Proofs, a literature
review, and further examples can be found in Teytelboym (2012).

2 Networks

We begin by considering contractual networks between partners engaged in research.

2.1 Ingredients

Agents form a finite set N . We define a network (a hypergraph) as a pair H ⌘ (N,Y ) where
Y ✓ X ⌘ 2N \ ; . Any y 2 Y , such that |y| � 2, is called a hyperedge, which represents a separate
contractual agreement (or contract) between the agents i 2 y.3 We use hypergraphs in order to
capture that fact that some of the agents already linked by a contractual commitment may want to
form separate contractual links.

3Hypergraphs are simple generalization of graphs, where all hyperedges Y have cardinality 2 and represent edges
connecting vertices. All our results apply to graphs. See examples below.
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A. Teytelboym

The set of all possible hypergraphs on N is H. Any two agents i and j, who belong to the same
contract y are called partners. Denote by a(y) ⌘ y ✓ N the agents associated with a contract
Y . Then a(Y ) ⌘ Y ⌘ T

y2Y {a(y)} would denote the set of agents who belong to every contract
in Y and by Y i = {y 2 Y |i 2 y} the set of contractual agreements which agent i is part of. The
reason why a(y) ⌘ y in the networks framework is that every contract is defined by the set of agents
who are part of it. This assumption will be relaxed in the next section, but we keep the notation
consistent. The set of contracts that every member of S ✓ N is part of is denoted YS =

T
i2S Yi and

the set of all contracts that S is part of is YS =
S

i2S Yi. Hence, {i, j} = S are partners if YS 6= ;.
Any two agents are connected if there exists a path (i, i1, i2 . . . ik, j) such that i, i1 2 y0, i1, i2 2 y1

and j 2 yk for some y0 . . . yk 2 Y . If any two distinct agents are connected then the hypergraph is
connected. If the hypergraph is not connected, then it can be partitioned into maximally connected
components ⇡ 2 ⇧(H) (elements of the partition). A component is trivial if it consists of one agent.
If all components are trivial, the hypergraph is empty. H(⇡) denotes a subhypergraph H on ⇡.

A value function v defines the surplus (profit) of each contractual agreement on a network:

v : H! [0,1)

where v(;) = 0. The set of all value functions is V. The payoffs of the agents are determined
by a strictly increasing, continuous allocation rule, �i(H, v) where � : H ⇥ V ! R|N | is the set
of all allocation rules. Thus the allocation rule determines how the surplus (profit) from a set
of contractual agreements is shared between partners. Define q : H ⇥ [0,1) ! R|N |, such that
q(H, v(H)) = �(H, v) for all H 2 H and v 2 V. We assume that limw!1qi(H,w) = 1 for all
w = v(H).

2.2 Stability

We now extend the definition of strong stability to networks represented by hypergraphs. Con-
sider a group deviation which induces H 0 ⌘ (N,Y 0) by S ✓ N from H ⌘ (N,Y ) such that:

• New agreements are formed by deviating agents only: YT 2 Y 0 and YT /2 Y =) T ✓ S

• Agents can sever any existing contractual agreement: YT 2 Y and YT /2 Y 0 =) T
T

S 6= ;.
But that means agents cannot break any contracts with those outside S.

Definition 1 A network H is strongly stable with respect to the allocation rule � and value
function v if there is no group deviation such that for all i 2 S , �i(H 0, v) > �i(H, v) where H 0 is a
network induced by a group deviation S from H.

This definition of stability allows for any strictly profitable deviation by any group of agents.
It generalises the definition of strongly stable networks found in Dutta and Mutuswami (1997) to
hypergraphs.
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Strong stability in contractual networks and matching markets

2.3 Example

In this section, we illustrate why strong pairwise alignment is important for network stability.
Suppose that four firms N = {1, 2, 3, 4} can collaborate on research. Expected profits from each
collaboration are known ex ante. Once the contracts are signed, the agreed profit allocation rule
is enforced when the profits are received. How should the firms allocate expected profits to ensure
that a strongly stable research network can be found regardless of the distribution profits that is
possible in the network? In these examples, we will restrict ourselves to the standard case studied
in the network literature where agents can be in one research collaboration at a time (|Yi| = 1,
see Figure 1). We will also assume (without any loss of generality) that any connected component,
which contains the same researchers, has the same value.

The profits from any network which represents a research collaborations are represented by the
following (superadditive and monotonic) value function v 2 V:

v({1}) = v({1, 3}) = v({2, 3}) = v({3, 4}) = 30; v({1, 2}) = 40; v({4}) = 5; v({3}) = 0;
v({2, 4}) = 50; v({1, 4}) = v({1, 3, 4}) = 60; v({1, 2, 4}) = 80; v({2, 3, 4}) = 66; v({1, 2, 3}) = 93;
v({1, 2, 3, 4}) = 98.

The payoff structure reflects the fact that there may be complementarities and technological
spillovers in the research network.

2.3.1 Instability - Shapley value

We first suppose that firms agree (ex ante) to allocate the profits according to the Shapley value
(Shapley, 1953) of each network component. It is well known that the Shapley value does not always
produce a surplus allocation that accommodates a strongly stable network. Table 1 shows how the
payoffs are allocated in some productive networks.

Table 1: Values and profits in a strongly unstable network

Firm profit (�i)

Network value/Agent 1 2 3 4

v({1, 4}) = 60 421
2 . . 171

2

v({2, 4}) = 50 . 271
2 . 221

2

v({1, 2, 3}) = 93 41 31 21 .

v({1, 2, 3, 4}) = 98 351
3 29 14 192

3

In this case there is no strongly stable network. If firms 1 and 4 form a network, 2 and 4 would
have an incentive to deviate. However, then firms 1, 2 and 3 would want to deviate to obtain a
payoff of 5. But firms 1 and 4 would want to deviate back to their original network, forming a cycle.
It can be easily checked that no other network is strongly stable.4

4According to Shapley value, the remaining network payoffs are as follows: �1({1, 2}) = 30, �2({1, 2}) = 0,
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2.3.2 Stability - equal sharing

Let us now consider a network with the same value function, but where firms agree to share
profits equally (Jackson and van den Nouweland, 2005).5 See Table 2.

Table 2: Values and payoffs in a strongly stable network

Firm profit (�i)

Network value/Agent 1 2 3 4

v({1, 4}) = 60 30 . . 30

v({2, 4}) = 50 . 25 . 25

v({1, 2, 3}) = 93 31 31 31 .

v({1, 2, 3, 4}) = 98 241
2 241

2 241
2 241

2

The strongly stable network in this case is {{1, 2, 3}, {4}} and the firms’ expected profit vector
is (30, 121

2 , 0, 121
2).6 In this case the strongly stable allocation is also efficient, but as Dutta and

Mutuswami (1997) this is not always the case (see footnote 5). Since the contract specifies the
allocation of profit, once profits are received they cannot be transferred between agents.

2.4 Assumption on preferences

We now explain why the allocation according to Shapley value did not accommodate a strongly
stable network, but equal sharing did. In order to do this, we now formally state our main assump-
tion on the profit allocation rule.

Definition 2 For a given value function v, an allocation rule � satisfies strong pairwise

alignment if for any agents i and j who are partners in contracts Yi,j 2 Y and Y 0
i,j 2 Y 0 in

Y, Y 0 ✓ X then �i(H, v) � �i(H 0, v)() �j(H, v) � �j(H 0, v).

The assumption states that whenever we take two different networks (sets of contracts repre-
sented as hypergraphs) with the same value function and any set of agents who are partners in

�1({1, 3}) = 30, �3({1, 3}) = 0, �2({2, 3}) = 20, �3({2, 3}) = 10, �3({3, 4}) = 12.5, �4({3, 4}) = 17.5, �1({1, 2, 4}) =
34 1

6 , �2({1, 2, 4}) = 19 1
6 , �4({1, 2, 4}) = 26 2

3 , �2({2, 3, 4}) = 27 5
6 , �3({2, 3, 4}) = 12 5

6 , �4({2, 3, 4}) = 25 1
3 ,

�1({1, 3, 4}) = 34 1
6 , �3({1, 3, 4}) = 4 1

6 , �4({1, 3, 4}) = 21 2
3 . Hence, for the remaining networks: �1,2({1, 2, 3}) >

�1,2({1, 2}), �1({1, 4}) > �1({1, 3}), �2,3({1, 2, 3}) > �2,3({2, 3}), �3,4({1, 2, 3, 4}) > �3,4({3, 4}), �1,2({1, 2, 3}) >
�1,2({1, 2, 4}), �2,3({1, 2, 3}) > �2,3({2, 3, 4}), �1,3({1, 2, 3}) > �({1, 3, 4}) and �1,2,3({1, 2, 3}) > �1,2,3({1, 2, 3, 4}).

5The intuition would be the same if firms competed to gain monopoly rights to the technology they develop.
Suppose that if firms spend ci on research, they have probability ciP

i ci
of getting the technology. Each firm expects to

obtain ciP
i ci

v(Yi)�ci and in a Nash equilibrium each firm’s expected payoff is �i(H, v) = v(Y i)/|Yi|2 (Tullock, 1980).
The strongly stable network in this case is {{1}, {2, 4}, {3}} and the firms’ expected profit vector is (30, 12 1

2 , 0, 12 1
2 ).

The resulting strongly stable allocation does not maximise surplus.
6If surplus is shared equally, the remaining network payoffs are as follows: �4({3, 4}) = �3({3, 4}) = �3({2, 3}) =

�2({2, 3}) = �1({1, 2}) = �1({1, 3}) = �3({1, 3}) = �2({1, 2}) = 15, �1({1, 2, 4}) = �2({1, 2, 4}) = �4({1, 2, 4}) =
80/9, �2({2, 3, 4}) = �3({2, 3, 4}) = �4({2, 3, 4}) = 22/3, �1({1, 3, 4}) = �3({1, 3, 4}) = �4({1, 3, 4}) = 20/3.
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Strong stability in contractual networks and matching markets

every contract in both networks, their preferences over the networks should be the same. In the
first example, we can see that profit allocation according to the Shapley value does not satisfy
strong pairwise alignment. Firm 1 prefers contractual agreement {1, 2, 3, 4} to {1, 2, 4}, but firm 4
has the opposite preference. In the second example strong pairwise alignment is satisfied for any
two networks. For example, firms 1, 2 and 3 prefer contractual agreement {1, 2, 3} to {1, 2, 3, 4};
firms 1 and 2 both prefer contract {1, 2, 3, 4} to contract {1, 2}, and so on (see footnote 6).

2.5 Stability result

We can now state our first stability result for networks.

Proposition 1 A network H 2 H is strongly stable with respect to the allocation rule � and the

value function v 2 V if and only if the allocation rule satisfies strong pairwise alignment.

Unlike Dutta and Mutuswami (1997) and Jackson and van den Nouweland (2005), we do not
assume anything about component additivity of the value function or the component-balancedness,
anonymity or decomposability of the allocation rule and their results are subsumed in Proposition
1.7 In order to illustrate this, let us simply assume that the profit firms get equals to the sum of
the contracts from separate contractual agreement it signs. Hence, the allocation rule is contract-

additive if �i(H, v) =
P

y2Yi
�i(H(N, y), v).

Corollary 1 Suppose the allocation rule � is contract-additive. A network H 2 H is strongly

stable with respect to � and the value function v 2 V if and only if the allocation rule satisfies strong

pairwise alignment for any two contractual agreements.

This makes it clear how the results from Pycia (2012) translate into a network structure. If
the allocation rule is contract-additive, then equal sharing or Nash bargaining (with exogenous bar-
gaining powers and fixed outside options) for profits within each contractual agreement will satisfy
pairwise alignment, whereas Shapley (or Myerson) value division or Kalai-Smorodinsky bargaining
would not (see further examples in the Appendix).

Finally, similarly to Dutta and Mutuswami (1997) and Pycia (2012), we can note that all strongly
stable allocations can be supported by a strong Nash equilibrium.

3 Multilateral matching markets

Here we extend the network model to a matching market, where there are two types of agents,
let us call them financiers and inventors. In order to produce profitable ventures inventors must be
matched to financiers. Each financier can enter into several ventures with any group of inventors,
but each venture will require a separate contractual agreement. We allow agents to have general

7In the hypergraph context a value function is component-additive if v(H) =
P

⇡2⇧(H) v(⇡) i.e. there are no
externalities between components. An allocation rule is component-balanced if

P
i2⇡ �i(H, v) = v(⇡) (value allocated

fully to the component members) and component decomposable �i(H, v) = �i(H(⇡), v) for ⇡ 2 ⇧(H), and i 2 ⇡
(allocation in component is independent of the structure of other components).
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A. Teytelboym

preferences over their contractual agreements and partners. The most important distinction between
the two models is that the contracts that agents can sign are now assumed to be finite.

3.1 Ingredients

We introduce a multilateral matching model with contracts, following Hatfield and Kominers
(2011b). For concreteness, we could partition the finite set of agents N = F

S
G into a set F of

financiers and a set G of inventors. Let X denote a set of all contracts. An contracual allocation is
a set of contracts Y ✓ X. Each multilateral contract y 2 Y ✓ X is now associated with at most one
financier and at least one inventor. It is worth noting that unlike in the network model, the same set
of agents can now sign several contracts. Denote by a(y) ✓ N the set of agents in contract y and so
if f 2 a(y) the financier f is associated with a contract y. Then a(Y ) ⌘ T

y2Y {a(y)} would denote
the set of agents who belong to every contract in Y . As before, Yg ⌘ {y 2 Y |g 2 a(y)} is the set of
contracts in Y associated with inventor g and for any S ✓ N , YS =

T
i2S Yi, and YS =

S
i2S Yi.8

The main distinction between a network model and a multilateral matching model is the restric-
tion on how contractual agreements can be formed. In the network model a contractual agreement
could be signed between any two agents. In the matching market, we preserve its two-sided nature
by imposing the following limits on contractual feasibility.

Assumption 1 No contract includes more than one financier.

Assumption 2 Every financier can sign a contract with at least one inventor.

Assumption 3 A financier cannot sign a single contract with every inventor.

Define -i is a weak preference relation (a complete preorder) over sets of contracts in 2Yi

involving i. For a set of contracts Yi written in a given contractual language X (see next section)
this preference relation is denoted -X

i 2 RX
i where RX

i is the domain of all possible preference
ordering on X for i. The preference profile of all agents over X is then (-X

i )i2N =-X
N . Hence, -X

N

is an element of RX = ⇧i2NRX
i - the preference domain under contractual language X. Note that

the preference domain depends entirely on the cardinality of X i.e. how many possible different
contracts agents can sign.

Definition 3 Contract allocation satisfies strong pairwise alignment with respect to a con-
tractual language X if for any agents i, j 2 N and any allocations Y, Y 0 ✓ X where some sets of
contracts Yi,j 2 Y and Y 0

i,j 2 Y 0 contain both i and j, then , Yi,j -X
i Y 0

i,j () Yi,j -X
j Y 0

i,j .

This immediately generalizes our definition of strong pairwise alignment over networks. When-
ever there is a choice of between two different sets of contracts, both of which include a financier and
an inventor, the financier and the inventor must prefer the same contract. A multilateral partner-
ship, studied in a potential function framework by Page Jr. and Wooders (2010) is an appropriate

8This multilateral matching market is a natural extension of the many-to-many matching model with bilateral
contracts discussed by Hatfield and Kominers (2011a) and Hatfield et al. (2011).
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example. Financiers and inventors are partners in the project, so they aim to maximize the value of
the project. Similarly, if an inventor wants to pursue a management strategy, the financier of this
venture will support her and vice versa.

3.2 Contractual language

In the multilateral matching market we no longer assume that contracts simply specify the
shares of perfectly divisible profit. Instead we assume that contracts form a finite set. The rationale
for this was given by Roth (1984): “salary cannot be specified more precisely than to the nearest
penny, hours to the nearest second”. Contracts, however, can specify many aspects of a relationship
between financiers and inventors. A contract would stipulate exactly how much equity each party
gets, whether they get a seat on the management board and so on. In this paper, we will assume
that financiers and inventors can determine the terms contractual relationship sufficiently precisely.9

Definition 4 Contractual language X is fine if for any -X
N2 RX , any agent i 2 N , and three

different sets of contracts Y, Y 0, Y 00 ✓ X if Y 0 -i Y 00 and i 2 a(Y ), then there is a preference profile
-⇤X

N2 RX such that Y 0 -⇤X
i Y -⇤X

i Y 00, and all agents’ -⇤X
N -preferences between sets of contracts

not including Y are the same as their -X
N -preferences.

Definition 5 Contractual language X is very fine if it is fine and:

• For any -X
N2 RX , any agent i 2 N , and two different sets of contracts Y, Y 0 ✓ X, there is a

preference profile -⇤X
N2 RX such that Y �⇤Xi Y 0 for all i 2 a(Y

T
Y 0) and all agents’ -⇤X

N -
preferences between sets of contracts not including Y are the same as their -X

N -preferences.

• For any -X
N2 RX , any agents i and j, and three different sets of contracts Y, Y 0, Y 00 ✓ X,

Y 0 �i Y ⇠j Y 00, then there is a preference profile -⇤X
N2 RX such that Y 0 �⇤Xi Y �⇤Xj Y 00 and

all agents’ -⇤X
N -preferences between sets of contracts not including Y are the same as their

-X
N -preferences.

The assumptions on contractual language stipulate that if the wage dimension of the contract
is no longer divisible (the profit division is already specified to the neartest penny), there will be
another contractual dimension (e.g. working hours) which will allow us to ‘separate’ agents’ prefer-
ences between any two contract allocations. While most of the matching literature assumes that all

9The fineness condition is similar to saying that contracts between agents can be represented by simplicial com-
plexes. We could also apply a theory of contractual language developed by Hatfield and Kominers (2011a), which
extended the work of Roth (1984), to a many-to-many matching market. A contractual primitive is any possible
agreement between a financier and an inventor. The set of contractual primitives between a financier f 2 F and a
set of inventors G ✓ G as !(f,G) and ⌦f ⌘

S
f2F !(f,G) is the set of contractual primitives associated with financier

f. A primitive allocation ⇤ ✓
S

(f,G)2f⇥(2G\;) !(f,G), where !(f,G)
T

!(f 0,G0) = ; for (f,G) 6= (f 0,G0). Define the
power set P(!(f,G)) = 2!(f,G) as a collection of primitives between f and G. A contract between f and G is an
element of P(!(f,G)) � ;. For example, the primitives of the contract could specify the amount of equity (e 2 E),
management board structure (m 2 M) and advertising strategy (a 2 A) so !(f,G) = {e, m, a}. Contract language
X ⌘

S
(f,G)2f⇥(2G\;) X(f,G) where X(f,G) ✓ P(!(f,G))� ; is a contract language for any financier and any subset of

inventors. Hence, a contract language is a union of all possible relationships between all financiers and inventors. ⇤
is expressible in contract language X if there exists some Y ✓ X such that ⇤ =

S
y2Y y. If a contractual language

cannot express an allocation, this means that this allocation is not permitted under this language.
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preference relations between contracts are strict, our conditions on preferences are substantially less
restrictive. Contractual language is very fine for the domain of all strict preference profiles. Hence,
in the case of a strictly increasing, continuous allocation rule used to divide profits in the network
model (described in the previous section) contractual language is very fine.

3.3 Stability

We say a contract allocation is strongly stable if no agent wants to drop his contracts and
no group of agents can deviate, form contracts only among themselves, drop any of their existing
contracts and strictly prefer the new allocation. It mimics the strong stability notion we used for
contractual networks. It is essentially the strongest stability concept used in the matching market
literature. If a strong group stable matching exists, then it is difficult to imagine how any deviation
from could it be rational.

Definition 6 A contract allocation Y ✓ X is strongly stable with respect to contractual
language X if it is:

1. Individually rational: for all i 2 a(Y ), Y i = max-X
i
{U ✓ Y |y 2 U ) i 2 a(y)}

2. There does not exist a non-empty, feasible Z ✓ X such that:

• Z
T

Y = ;, and

• for all j 2 a(Z), there exists a Wj ✓ Z
S

Y such that Z ✓Wj and Wj �X
j Yj

3.4 Main results

The two main results of this paper are the following:

Theorem 1 If contractual language X is fine and all preference profiles in RX
satisfy strong

pairwise alignment, a strongly stable contract allocation Y ✓ X exists.

Theorem 2 If contractual language X is very fine and a strongly stable contract allocation

exists Y ✓ X then all preference profiles in RX
satisfy strong pairwise alignment.

Teytelboym (2012) provides the proofs. These results show that a strongly stable contract
allocation can exist for a matching market with complementarities, peer effects (or technological
spillovers) and finite contracts as long as the preference profile of agents is suitably constrained.
Proposition 1 is a clear consequence of Theorems 1 and 2 where F = ; because we have not ruled
out that a contract has no financiers.

Our setting challenges several recent results in the matching literature.10 First, in a doctor-
hospital matching setting Hatfield and Kominers (2011a) shows that if preferences for one agent are

10Pycia (2012) shows that in a many-to-one setting that the usual comparative statics outlined in Crawford (1991)
do not hold.
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Strong stability in contractual networks and matching markets

not substitutable, then “there exist substitutable preferences for the other doctors and hospitals such
that no many-to-one stable allocation exists” (Theorem 12). While our results do not contradict it,
we showed that substitutability of preferences is not necessary (in the usual mathematical sense) in
a matching market as Hatfield and Kominers imply. Second, Hatfield and Kominers (2011a) show
that a coarser language will support a strongly stable many-to-many matching whenever it exists
(Theorem 3). The spirit of our results suggests the opposite. Without a fine contractual language
a strongly stable contract allocation is not guaranteed when strong pairwise alignment is satisfied.

4 Conclusions and extensions

In this paper, we showed that a necessary and sufficient condition for the existence of strongly
stable networks and contract allocations in two-sided matching markets is strong pairwise alignment.
First, this condition generalized some of the results from the networks literature. Second, contrary to
conventional wisdom in the matching literature, it showed that neither substitutability of preferences
nor a coarse contractual language is essential for a strongly stable contract allocation. This paper
also shows that an integrated approach to matching markets and networks can be very fruitful. It
also suggests that there may be a deeper relationship between contractual language and production
technologies in matching markets than previously thought.

An interesting extension of this model would be to design an efficient P -complete algorithm to
find the strongly stable allocation where strong pairwise alignment is satisfied. Since most efficient
algorithms rely on substitutability of preferences (Echenique and Oviedo, 2006) or on a many-to-
one market structure (Echenique and Yenmez, 2007), they cannot be applied directly to this model.
Finally, the results in this paper say nothing about the conflict between efficiency and stability
common in the networks literature. This avenue of research could also be explored further.
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A SUPPLY AND DEMAND FRAMEWORK FOR TWO-SIDED MATCHING

MARKETS

EDUARDO M. AZEVEDO AND JACOB D. LESHNO

Two-sided matching markets are markets where agents care about whom they interact with in
the other side. This includes several real world examples, such as colleges and students, or Internet
content providers and advertisers. In these, and several other prominent examples, each agent on
one side is matched to a large number of agents on the other side. However, little is known about
special properties of such markets. To investigate this, we propose a variation of the Gale and
Shapley college admissions model, where a finite number of colleges is matched to a continuum
of students. Colleges’ preferences over students are represented by a score. A student’s score at
different colleges need not be the same.

In both the continuum and the traditional discrete models, stable matchings have a very simple
representation. Any stable matching can be described by a vector of threshold scores at each college,
which we term a cutoff. We define a student’s demand given cutoffs to be her favorite college out of
the colleges for which her score is above the threshold. A set of cutoffs is said to clear the market if
demand for colleges equals the supply of seats, or leaves empty seats in colleges with a cutoff equal
to zero (the minimal score). The cutoff lemma guarantees that each stable matching corresponds
to a market clearing cutoff, and vice versa. Cutoffs allow us to find the set of stable matchings by
solving a set of simple market clearing equations.

We find that for almost every continuum matching market the following holds: (i) There is a
unique stable matching. (ii) For any sequence of approximating discrete economies, the diameter
of the set of stable matchings converges to 0. This complements previous findings that in large
matching markets all stable matchings are very similar ([5], [4]).(iii) Moreover, the set of stable
matchings converges to the stable matching of the continuum limit. (iv) Stable matchings of
the continuum economy vary continuously with the parameters of the model. This theoretically
supports using data and simulations to inform market design (as in [5]). (v) Stable matchings
of discrete economies randomly generated from the distribution of agents in the limit converge
almost surely to the limit economy’s stable matching. This implies a simple characterization of
the asymptotic behavior of several mechanisms, generalizing previous work on the random serial
dictatorship mechanism.

References

[1] E. Azevedo. Imperfect competition in two-sided matching markets. Mimeo, 2010.
[2] E. Azevedo and J. Leshno. Can we make school choice more efficient? An example. Mimeo, 2010.
[3] D. Gale and L. Shapley. College admissions and the stability of marriage. American Mathematical Monthly, 69(1):9–15,

1962.
[4] N. Immorlica and M. Mahdian. Marriage, honesty, and stability. In SODA 2005.
[5] A. Roth and E. Peranson. The redesign of the matching market for american physicians: Some engineering aspects of

economic design. The American Economic Review, 89(4):748–780, 1999.

Extended Abstract. A full version of this paper is available at http://www.people.fas.harvard.edu/~jleshno/

papers/College_continuum.pdf. Azevedo: Harvard University, azevedo@fas.harvard.edu. Leshno: Harvard Univer-
sity and Harvard Business School, leshno@hbs.edu.

1

124124

davidm
Pencil



Solutions for the Stable Roommates
Problem with Payments
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The stable roommates problem with payments has as input a graph G = (V,E)
with an edge weighting w : E → R+ and the problem is to find a stable solution.
A solution is a matching M with a vector p ∈ RV

+ that satisfies pu+pv = w(uv) for
all uv ∈ M and pu = 0 for all u unmatched in M . A solution is stable if it prevents
blocking pairs, i.e., pairs of adjacent vertices u and v with pu + pv < w(uv).

By pinpointing a relationship to the accessibility of the coalition structure
core of matching games, we give a simple constructive proof for showing that
every yes-instance of the stable roommates problem with payments allows a path
of linear length that starts in an arbitrary unstable solution and that ends in a
stable solution. Our result generalizes a result of Chen, Fujishige and Yang [1] for
bipartite instances to general instances. We also show that the problems Block-
ing Pairs and Blocking Value, which are to find a solution with a minimum
number of blocking pairs or a minimum total blocking value, respectively, are
NP-hard. Finally, we prove that the variant of the first problem, in which the
number of blocking pairs must be minimized with respect to some fixed match-
ing, is NP-hard, whereas this variant of the second problem is polynomial-time
solvable.

We pose the following two open problems. What is the computational com-
plexity of Blocking Pairs and Blocking Value restricted to input graphs
with unit edge weights?
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Flexibility of Transfers and Unraveling in Matching

Markets

Songzi Du∗ Yair Livne†

May 2012

Abstract

We show that without flexible transfers, the timing of transactions is difficult to

coordinate in large matching markets. In our model, some agents have the option of

matching early before others arrive. We compare two regimes. In the first regime,

transfers which divide surpluses created between the two sides of the market are ex-

ogenously fixed, perhaps due to some institutional constraints. Then even with a

centralized mechanism that implements a stable matching after all agents arrive, some

agents have incentives to match early. We prove that in this setting, as the market

gets large, on average approximately one quarter of all agents have strict incentives to

match early. Moreover, as the market gets large, with probability tending to 1 there

is no early matching scheme that is dynamically stable. On the other hand, in the

second regime in which agents can freely negotiate transfers, a stable matching after

all agents arrive eliminates all incentives to match early and is dynamically stable.

∗Graduate School of Business, Stanford University. Email: songzidu@stanford.edu
†Graduate School of Business, Stanford University. Email: ylivne@stanford.edu
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Tuition Exchange∗

Umut Mert Dur†

University of Texas

M. Utku Ünver ‡

Boston College

June 28, 2012

Abstract

In this paper we introduce a new class of matching problems which mimics tuition exchanges

programs used by colleges in US as a bene�t to their faculty members. The most important

bene�t of participating to the tuition exchange program is that colleges strengthen their compen-

sation package to their faculty and sta� at a very nominal cost. Participating colleges �nd The

Tuition Exchange can serve as a strong incentive for top job candidates to accept their o�ers.

Hence, the tuition exchange programs help level the playing �eld for small colleges in hiring and

retaining promising faculty. In tuition exchange programs, each college ranks its own faculty

members according to the length of the employment of the faculty. Based on this ranking each

college determines the set of eligible dependents of faculty who can participate the scholarship

program. Then, the eligible students (dependents) are awarded with scholarship according to

the preferences of colleges over eligible students, preferences of eligible students over colleges and

the number of available slot in each college. The main concern for each colleges is maintaining

a balance between the number of students certi�ed as eligible by that institution (exports) and

the number of scholarships awarded to students certi�ed as eligible by other member colleges

enrolling at that institution (imports). We propose a new mechanism, two sided top trading

mechanism (2S-TTC), which is a variant of well-known top trading cycle mechanism . To our

knowledge this is the �rst time such that a variant of TTC mechanism is used in a market in

which both sides (colleges and students) are strategic. We show that 2S-TTC mechanism selects

balanced matching which is not dominated by another balanced matching. Moreover, it cannot

be manipulated by students and it respects the internal rankings of colleges. We also show that

it is the unique mechanism holding these features.

∗We thank John Du�y for initial discussions.
†Address: The University of Texas at Austin, Department of Economics ; e-mail: umutdur@gmail.com; web page:

https://sites.google.com/site/umutdur/
‡Address: Boston College, Department of Economics, 140 Commonwealth Ave., Chestnut Hill, MA, 02467; e-mail:

unver@bc.edu; web page: http://www2.bc.edu/~unver
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On the structural characteristics of the Stable Marriage polytope ∗
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2Department of Informatics, Technological Educational Institute of Athens

Ag. Spyridonos Str., 12210 Egaleo, Greece
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Abstract

The Stable Marriage problem asks for a matching of men to women that is stable under given preferences.

It has been observed that some man-woman pairs have the property that although they are non-stable (i.e.,

they participate in no solution), they cannot be removed from the preference lists; such a removal would alter

the set of solutions. However, these pairs have not been characterized yet. Likewise, some of the fundamental

characteristics of the Stable Marriage polytope have not been established. In the current work, we show that

these two seemingly distant open issues are closely related. We identify the pairs with the above-mentioned

property and present a polynomial algorithm for producing them. This is accomplished by using the partial order

defined on rotations, representable by the rotation-poset graph G, and its transitive reduction G−. Utilizing that

result, we derive the dimension of the Stable Marriage polytope P and all alternative minimal linear descriptions.

More specifically, we establish that the dimension of P equals the number of nodes of G (i.e., the number of

rotations). Further, we establish the minimal equation system and show that non-removable non-stable pairs

induce some of the facets of P. The remaining facets of P are also identified with the use of the graph G−.

Hence, we obtain a minimal linear description of P. In fact, we derive all alternative such descriptions as different

inequalities may define the same facet and several equations may take each other’s place in the minimal equation

system.

∗This research has been co-funded by the European Union (European Social Fund) and Greek national resources under the framework
of the “Archimedes III: Funding of Research Groups in TEI of Athens” project of the “Education & Lifelong Learning” Operational
Programme.
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An Equilibrium Analysis of the Probabilistic Serial

Mechanism�

Özgün Ekiciy Onur Kestenz

May, 2012

Abstract

The prominent mechanism of the recent literature in the assignment problem is the

probabilistic serial (PS). Under PS, the truthful (preference) pro�le always constitutes

an ordinal Nash Equilibrium, inducing a random assignment that satis�es the appealing

ordinal e¢ ciency and envy-freeness properties. We show that both properties may fail

to be satis�ed by a random assignment induced in an ordinal Nash Equilibrium where

one or more agents are non-truthful. Worse still, the truthful pro�le may not constitute

a Nash Equilibrium, and every non-truthful pro�le that constitutes a Nash Equilibrium

may lead to a random assignment which is not ordinally e¢ cient, not even weakly

envy-free, and which admits an ex-post ine¢ cient decomposition. A strong ordinal

Nash Equilibrium may not exist, but when it exists, any pro�le that constitutes a

strong ordinal Nash Equilibrium induces the random assignment induced under the

truthful pro�le. The results of our equilibrium analysis of PS call for caution when

implementing it in small assignment problems.

JEL Classi�cation Numbers: C70, D61, D63

Keywords: random assignment, probabilistic serial, equilibrium, Nash Equilibrium,

ordinal Nash Equilibrium, strong ordinal Nash Equilibrium, ordinal e¢ ciency, envy-

freeness.

�We would like to thank Utku Ünver and Morimutsu Kurino for useful discussions and comments.
yÖzye¼gin University, Istanbul, Turkey. Email: ozgun.ekici@ozyegin.edu.tr
zTepper School of Business, Carnegie Mellon University, PA 15213, USA. Email: oke-
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Abstract This paper studies participation of unspecified donors in kidney exchange through simultaneous 

domino paired donation (DPD) and non-simultaneous extended altruistic donor (NEAD) chains. In contrast 

to previous studies, we specifically investigate the termination of chains, the possibility of transplantation 

across the blood type barrier, and the impact of incentives in multi-center exchanges. Furthermore, we 

look into the effect of various configuration parameters such as the timing between exchanges. Our analy-

sis is based on a simulation study that uses data of all 438 patient-donor pairs and 109 unspecified donors 

who were screened at Dutch transplant centers between 2003 and 2011. In order to clear large exchang-

es involving long DPD and NEAD chains, we developed an iterative multi-criteria branch-and-price solver 

that adheres all allocation criteria of the Dutch national kidney exchange program. Because multi-center 

coordination may raise incentive issues, special attention is paid to individually rational implementation. 

Our findings are as follows. Chains are best terminated when no further segment is part of an optimal ex-

change within 3 months. Transplantation across the blood type barrier allows for longer continuation of 

chains, more transplants and more equitability among patient groups. NEAD chains perform slightly better 

than DPD chains, provided that the renege rate is sufficiently low. The most substantial gains, however, 

are due to national individually rational coordination. Particularly highly sensitized and blood type O pa-

tients benefit. Appropriate timing between exchanges can further improve these results. 
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Matching with our Eyes Closed

Gagan Goel ∗ Pushkar Tripathi †

June 9, 2012

Abstract

Motivated by an application in kidney exchange, we study the following query-
commit problem: we are given the set of vertices of a non-bipartite graph G. The set
of edges in this graph are not known ahead of time. We can query any pair of vertices
to determine if they are adjacent. If the queried edge exists, we are committed to
match the two endpoints. Our objective is to maximize the size of the matching.

This restriction in the amount of information available to the algorithm con-
straints us to implement myopic, greedy-like algorithms. A simple deterministic
greedy algorithm achieves a factor 1/2 which is tight for deterministic algorithms.
A big open question in this direction is to give a randomized greedy algorithm that
has a significantly better approximation factor. This question was first asked al-
most 20 years ago by Dyer and Frieze and they showed that a natural randomized
strategy of picking edges at random doesn’t help and has an approximation factor of
1/2 + o(1). They left it as an open question to devise a better randomized greedy
algorithm. In subsequent work, Aronson, Dyer, Frieze, and Suen gave a different
randomized greedy algorithm and showed that it attains a factor 0.5 + ε where ε is
0.0000025; thus showing what they quoted as “a small triumph for randomization!”.

In this paper we propose and analyze a new randomized greedy algorithm for
finding a large matching in a general graph and use it to solve the query commit
problem mentioned above. We show that our algorithm attains a factor of at least
0.56, a significant improvement over 0.50000025.

As for upper bounds, we show that no randomized algorithm can have an ap-
proximation factor better than 0.7916 for the query commit problem. We also study
another intersting class of randomized algorithms called vertex-iterative algorithms.
Both our algorithm and that by Aronson et. al. fall in this class. We show that no
vertex iterative algorithm can have an approximation factor better than 0.75.

∗Google Research, New York (E-mail: gagangoel@google.com).
†Algorithms Combinatorics and Optimization, Georgia Institute of Technology (E-mail:

pushkar.tripathi@gatech.edu).
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Two-sided matching with one-sided data

Guillaume Haeringer

Universitat Autònoma de Barcelona

Vincent Iehlé

Université Paris Dauphine

In most two-sided matching markets that utilize a stable mechanism agents typically do
submit short preference lists. The purpose of this paper is to show that this feature add some
additional information about the set of possible stable matchings that can be exploited to im-
prove upon existing mechanisms.

The starting point of the paper is to consider what we call a pre-matching problem, which
consists of two sets of agents (i.e., the two sides of the market), and for only one side a preference
ordering over a subset of the agents from the other side. It is assumed that if a agent, say, a
student, appears on the preference list of an agent from the other side, say, a school, then
for any realization of the student’s preferences that school will be considered as acceptable for
that student. Conversely, a student not appearing on a school’s preference list will consider
that school as unacceptable. A pre-matching problem can be easily obtained from a “classical”
matching problem (simply by deleting from each school’s preferences the students that view the
school as unacceptable). Clearly, if we changes students’ preferences from a matching problem
without modifying the set of acceptable schools the corresponding pre-matching problem will
remain unchanged.

Our first result consist of characterizing a set of conditions for a pre-matching problem that
says whether, for each student and each school, there exists a matching problem such that for
some stable matching that student and that school are matched together. In case there does
not exist a students’ preference profile and a stable matching (with respect to those preferences)
the student is said to be dummy for that school. We also provide an algorithm to check whether
a student is a dummy for a school.

In the second part of the paper we consider the student-optimal stable mechanism. It is well
known that this mechanism is not efficient. We propose a new mechanism where before running
Gale and Shapley’s Deferred Acceptance algorithm we first eliminate from school’s preferences
the dummy students. It is shown that by doing so the matching we obtain weakly Pareto
dominates the student-optimal matching computed with the original preference profile. While
this new mechanism is not strategyproof, we show however that for each student, given a set of
schools she has decided to put in her preference list, it is a dominant strategy to put each school
in the same order as in her true preferences.

1
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Dynamic Matching in Overloaded Systems

Jacob D. Leshno∗

Abstract

In many assignment problems items arrive stochastically over time. When items are

scarce, agents form an overloaded waiting list and items are dynamically allocated as they

arrive; two examples are public housing and organs for transplant. Even when all the scarce

items are allocated, there is the efficiency question of how to assign the right items to the right

agents. I develop a model in which impatient agents with heterogeneous preferences wait to

be assigned scarce heterogeneous items that arrive stochastically over time. Social welfare

is maximized when agents are appropriately matched to items, but an individual impatient

agent may misreport her preferences to receive an earlier mismatched item. To incentivize an

agent to avoid mismatch, the policy needs to provide the agent with a (stochastic) guarantee

of future assignment, which I model as putting the agents in a priority buffer-queue. I

first consider a standard queue-based allocation policy and derive its welfare properties. To

determine the optimal policy, I formulate the dynamic assignment problem as a dynamic

mechanism design problem without transfers. The resulting optimal incentive compatible

policy uses a buffer-queue of a new queueing policy, the uniform wait queue, to minimize the

probability of mismatching agents. Finally, I derive a policy which uses a simple rule: giving

equal priority to every agent who declines a mismatched item (a SIRO buffer-queue). This

policy is optimal in a class of robust mechanisms and has several good properties that make

it a compelling market design policy recommendation.

∗Harvard University and Harvard Business School. yarboz@gmail.com
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Paired and Altruistic

Kidney Donation in the UK:

Algorithms and Experimentation∗

David F. Manlove and Gregg O’Malley

School of Computing Science, University of Glasgow, Glasgow, UK.

Email: {david.manlove,gregg.omalley}@glasgow.ac.uk.

Abstract

We study the computational problem of identifying optimal sets of kidney
exchanges in the UK. We show how to expand an integer programming-based
formulation [1, 2] in order to model the criteria that constitute the UK def-
inition of optimality. The software arising from this work has been used by
the National Health Service Blood and Transplant to find optimal sets of kid-
ney exchanges for their National Living Donor Kidney Sharing Schemes since
July 2008. We report on the characteristics of the solutions that have been
obtained in matching runs of the scheme since this time. We then present
empirical results arising from the real datasets that stem from these matching
runs, with the aim of establishing the extent to which the particular optimality
criteria that are present in the UK influence the structure of the solutions that
are ultimately computed. A key observation is that allowing 4-way exchanges
would be likely to lead to a significant number of additional transplants.
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Finally, we would like to thank Péter Biró, Rob Irving, Kirstin MacDonald and Ana Viana for
valuable input into this work.

134134



An Experimental Comparison of Single-Sided Preference

Matching Algorithms

Dimitrios Michail
Dept. of Informatics and Telematics

Harokopio University of Athens, Greece
michail@hua.gr

Consider the scenario where a set of applicants A has an interest in obtaining a set of
posts P and suppose that associated with each member of A is a preference list (possibly
including ties) comprising a subset of elements of P. A matching of A to P is an allocation
of each applicant to at most one post such that each post is filled by at most one applicant.
Stated differently, it is a matching in the bipartite graph G = (A∪P, E) where E consists of
all pairs (a, p) where p belongs in the ordered preference list of a.

The main focus of this work is to experimentally study matchings computed by various
one-sided preference matching algorithms with respect to their unpopularity. On the other
hand, since it would be unfair to judge algorithms based solely on the unpopularity, we include
additional quality measurements such as cardinality, total rank, maximum rank and running
time. We compare several different algorithms for the computation of rank-maximal match-
ings [3, 4], the algorithm of [1] for the computation of popular matchings, and the algorithm
of [2]. While popular matchings seem to be unrelated to rank-maximal matchings, the algo-
rithmic techniques required in order to efficiently compute both types are very much related.
Thus, all algorithms are implemented using similar heuristics and graph representations.

The experimental comparison of the aforementioned algorithms is performed on instances
created by three random structured instance generators. All generated problem instances
try to mimic different real life situations, while maintaining as few parameters as possible.
Moreover, in addition to synthetic datasets, we experiment with two real-world datasets.

References

[1] David J. Abraham, Robert W. Irving, Telikepalli Kavitha, and Kurt Mehlhorn. Popular matchings.
SIAM Journal on Computing, 37(4):1030–1045, 2007.
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popularity matchings. Algorithmica, pages 1–20, 2010.

[3] Robert W. Irving, Telikepalli Kavitha, Kurt Mehlhorn, Dimitrios Michail, and Katarzyna E.
Paluch. Rank-maximal matchings. ACM Transactions on Algorithms, 2(4):602–610, 2006.
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Two Simple Variations of Top Trading Cycles
Thayer Morrill, North Carolina State University (thayer morrill@ncsu.edu)

Abstract:
Top Trading Cycles is widely regarded as the preferred method of assigning
students to schools when the designer values efficiency over fairness. However,
there is a flaw in Top Trading Cycles when objects may be assigned to more
than one agent. If agent i’s most preferred object a has a capacity of qa, and i
has one of the qa highest priorities at a, then Top Trading Cycles will always
assign i to a. However, until i has the highest priority at a, Top Trading
Cycles allows i to trade her priority at other objects in order to receive a.
Such a trade is not necessary and may cause a distortion in the fairness of
the assignment. We introduce two simple variations of Top Trading Cycles
in order to mitigate this problem. The first, Clinch and Trade, reduces the
number of unnecessary trades but is bossy and depends on the order in
which cycles are processed. The second, priority-adjusted TTC, is nonbossy
and independent of the order in which cycles are processed, but allows more
unnecessary trades than is necessary to be strategyproof and efficient.
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Faster and simpler approximation of stable

matchings

Katarzyna Paluch ?

Institute of Computer Science, Wrocªaw University

Abstract. We give a 3
2
-approximation algorithm for stable matchings

that runs in O(m) time. The previously best known algorithm by Mc-

Dermid has the same approximation ratio but runs in O(n3/2m) time,

where n denotes the number of people and m is the total length of the

preference lists in a given instance. Also the algorithm and the analy-

sis are much simpler. We also give the extension of the algorithm for

computing stable many-to-many matchings.

? Supported by MNiSW grant number N N206 1723 33, 2007-2010.
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Hedonic Coalition Formation and Individual Preferences 

Szilvia Pápai 

We examine the hedonic coalition formation problem, in which players have preferences over 

the coalitions that they are in, and each player is a member of exactly one coalition. This problem is a 

generalization of well‐known matching problems, such as the marriage and roommate problems. The 

core of a hedonic coalition formation problem may be empty, i.e., there may not exist a stable hedonic 

coalition structure for a given coalition formation problem (see Banerjee et al. (2001) Soc. Choice 

Welfare 18: 135‐153 and Bogomolnaia and Jackson (2002) Games Econ. Behav. 38: 201‐230, among 

others).  

In this paper we focus on restrictions on individual preferences, following Alcalde and Romero‐

Medina (2006) Soc. Choice Welfare 27: 365‐375, rather than on restrictions on the preference profile 

(Bogomolnaia and Jackson (2001), Banerjee et. al (2002)) or on feasible coalitions (Pápai (2004) Games 

Econ. Behav. 48: 337‐354). What makes a preference restriction an individual preference restriction? A 

preference domain that satisfies a particular individual preference restriction is a Cartesian product of 

the agents' preferences satisfying this restriction, and we can allow each player to have a similar set of 

allowed preferences. Both preference profile restrictions and individual preference restrictions are 

important to investigate, as they complement each other. Profile restrictions are more descriptive in 

nature, as they can clarify whether there is a stable coalition structure in a particular situation, given the 

players' preferences. By contrast, individual preference restrictions gain their relevance if one asks the 

normative question of how to restrict players' preferences in order to guarantee the existence of a 

stable coalition structure. In addition, individual preference restrictions are typically easy to check, and 

an individual preference restriction that guarantees the existence of a stable coalition structure is also 

immune to population changes: for example, if new players arrive, it is still assured that a stable 

coalition structure exists, assuming that the new players' preferences also satisfy the individual 

preference restriction. 

We introduce an individual preference restriction called Inclusion Restriction, and prove that 

under appropriate assumptions of what constitutes a rich domain that satisfies an individual preference 

restriction, this property is the only one that guarantees the existence of a stable coalition structure for 

each preference profile in this domain. Inclusion Restriction requires that if two individually rational 

coalitions have a superset of their union ranked below both of them, then their intersection is ranked 

above at least one of them. We also identify two sufficient conditions for the existence of stable 

coalition structures, Intersection Restriction and Union Restriction, both of which imply the Inclusion 

Restriction, and show that when comparable, given our assumption of strict preferences, all of the 

sufficient conditions in the literature are stronger than at least one or the other of our two sufficient 

conditions. We note that the main property of Inclusion Restriction is a substantial weakening of the 

already known sufficient conditions, which can be seen immediately from the definition itself, as well as 

from the algorithm that we provide in order to show the sufficiency of this property. The algorithm gives 

us a way to identify a stable coalition structure for each preference profile in the domain for which 

Inclusion Restriction holds. Furthermore, in contrast to previous papers, which provide sufficient 

conditions only, we give a characterization: Inclusion Restriction is not only a weaker sufficient condition 

than the ones provided previously, but it is also a necessary condition when the preference domain is 

minimally rich, as specified, subject to an individual preference restriction. Therefore, our result sheds 

light on how demanding the restriction on individual preferences need to be in order to ensure the 

existence of a stable coalition structure by restricting individual preferences. 
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