Constrained multi-issue rationing problems

P Timoner and JM Izquierdo, University of Barcelona

Single-issue: rationing problem

Single-issue: CEA and CEL as a minimal allocation rules

A rationing problem is a triple (N, E, d), where

- $N = \{1, 2, \dots, n\}$ is a finite set of agents,
- $E \in \mathbb{R}_{++}$ is the estate to be distributed among the agents,
- $d \in \mathbb{R}^{N}_{+}$ is a vector of claims,
- We assume that $E < \sum_{i \in N} d_i$.

A rationing rule is a function φ , which associates to each rationing problem (N, E, d) a unique point $\varphi(N, E, d) \in \mathcal{D}(N, E, d)$, where

$$\mathcal{D}(N, E, d) = \left\{ x \in \mathbb{R}^N \middle| \begin{array}{l} \sum_{i \in N} x_i = E \text{ and} \\ 0 \le x_i \le d_i \text{ for all } i \in N \end{array} \right\}$$

Single-issue: Some classical solutions to rationing problems

Constrained equal awards rule, CEA.

$$CEA_i(N, E, d) = \min\{\lambda, d_i\}$$
 for all $i \in N$, where λ satisfies
$$\sum_{i \in N} \min\{\lambda, d_i\} = E.$$

Constrained equal losses rule, CEL.

$$CEL_i(N, E, d) = \max\{0, d_i - \lambda\}$$
 for all $i \in N$, where λ satisfies
$$\sum_{i \in N} \max\{0, d_i - \lambda\} = E.$$
 Single-issue: minimal allocation rules

A minimal allocation rule MA^{α} with respect to $\alpha \in \mathbb{R}^N$ assigns to every rationing problem (N, E, d) a vector $MA^{\alpha}(N, E, d) \in \mathbb{R}^N$ such that

$$MA^{\alpha}(N, E, d) = \arg\min\left\{\sum_{i \in N} (x_i - \alpha_i)^2 \middle| x \in \mathcal{D}(N, E, d)\right\}$$

 MA^{α} is well defined since $f(x) = \sum_{i \in N} (x_i - \alpha_i)^2$ is a continuous and strictly convex function and $\mathcal{D}(N, E, d)$ is compact and convex and so the minimization problem has a **unique solution**.

Remark: The parameter α can be interpreted as a reference point.

Motivation example: Hydraulic rationing (Kaminski, MSS (2000))

 $E^1 = 10, E^2 = 15$ and $E^3 = 12.$ $d_1 = (d_1^1, d_1^2, d_1^3) = (10, 10, 5)$ and $d_2 = (d_2^1, d_2^2, d_2^3) = (2, 15, 12).$ Single-issue CEA

We compare the total payoff of agent 1 and agent 2.

Graphical interpretations of the CEA and the CEL rules for 2 agents as a **minimal allocation** rule:

- If $\alpha = 0 \Rightarrow MA^0 = CEA$.
- If $\alpha = d \Rightarrow MA^d = CEL$.

Single-issue: Generalize rationing problems

A **generalize rationing problem** is a 4-tuple (N, E, d, δ) , where N, E and d are defined as be in the *rationing problem* and $\delta \in \mathbb{R}^N_+$ is the vector of endowments of the agents.

For any generalize rationing problem and for all $i \in N$, the **generalized equal awards rule** GEA rule is defined as

$$GEA_i(N, E, d, \delta) = \min \left\{ \max\{0, \lambda - \delta_i\}, d_i \right\},\,$$

where
$$\lambda$$
 satisfies $\sum_{i \in N} GEA_i(N, E, d, \delta) = E$.

Schummer, J. and Thomson, W., EL (1997)

Remark:

The GEA rule is a generalization of the CEA rule, since GEA(N, E, d, 0) = CEA(N, E, d).

Proposition $GEA(N, E, d, \delta) = MA^{-\delta}(N, E, d)$.

Single-issue: An hydraulic rationing interpretation of the GEA rule

$$E = 10, d = (10, 10, 5) \text{ and } \delta = (2, 0, 1).$$

Multi-issue: Constrained multi-issue allocation

Let us suppose that agents claim for different issues $\{1, 2, \ldots, m\}$ and there exist different amounts E^1, E^2, \ldots, E^m corresponding to the different issues that are available to satisfy those claims.

A constrained multi-issue allocation (CMIA) problem is a 4-tuple (N, M, \mathcal{E}, d) , where

- $N = \{1, 2, \dots, n\}$ is the set of claimants,
- $M = \{1, 2, \dots, m\}$ is the set of issues,
- $\bullet \mathcal{E} = (E^1, E^2, \dots, E^m) \in \mathbb{R}^M_{++}$ is the vector of estates,
- $\bullet d \in \mathbb{R}^{N \times M}_{+}$ is the matrix of claims.
- We assume that $E^j < \sum_{i \in N} d_i^j$ for all $j \in M$.

A CMIA rule is a function $\hat{\varphi}$, which associates to each CMIA problem (N, M, \mathcal{E}, d) a unique allocation $\hat{\varphi}(N, M, \mathcal{E}, d) \in \mathbb{R}^{N \times M}$ from the following set:

$$\mathcal{D}(N, M, \mathcal{E}, d) = \left\{ x \in \mathbb{R}^{N \times M} \middle| \begin{array}{l} \sum_{i \in N} x_i^j = E^j \text{ for all } j \in M \text{ and } \\ 0 \le x_i^j \le d_i^j \text{ for all } i \in N \text{ and } j \in M \end{array} \right\}$$

Multi-issue: Extended minimal allocation rules

A extended minimal allocation rule EMA^{α} with respect to $(\alpha_i^j)_{\substack{i \in N \ j \in M}}$ assigns to every CMIA problem (N, M, \mathcal{E}, d) an allocation $EMA^{\alpha}(N, M, \mathcal{E}, d) \in \mathbb{R}^{N \times M}$ obtained as follows:

Stage

$$\mathcal{D}_1 = \arg\min \left\{ \sum_{i \in N} \left(\sum_{j \in M} x_i^j - \sum_{j \in M} \alpha_i^j \right)^2 \middle| x \in \mathcal{D}(N, M, \mathcal{E}, d) \right\}$$

Stage 2

$$EMA^{\alpha}(N, M, \mathcal{E}, d) = \arg\min \left\{ \sum_{i \in N} \sum_{j \in M} \left(x_i^j - \alpha_i^j \right)^2 \middle| x \in \mathcal{D}_1 \right\}$$

 EMA^{α} is well defined since $\sum_{i \in N} \sum_{j \in M} \left(x_i^j - \alpha_i^j\right)^2$ is a continuous and strictly convex function and \mathcal{D}_1 is a compact and convex set and so the minimization problem has a **unique solution**.

Properties of the extended minimal allocation rule

Consistent over agents. For all $T \subseteq N$

$$EMA^{\alpha}(N, M, \mathcal{E}, d)_{|T} = EMA^{\alpha_{|T}} \left(T, M, \left(E^{j} - \sum_{i \in N \setminus T} EMA_{i}^{j\alpha}(N, M, \mathcal{E}, d) \right)_{j \in M}, d_{|T} \right)$$

• $EMA^{\alpha}(N, M, \mathcal{E}, d)$ is consistent over agents.

Single-issue consistent. For all $j \in M$

$$EMA^{\alpha}(N, M, \mathcal{E}, d)_{|\{j\}} = EMA^{\alpha'}(N, E^{j}, d^{j}),$$

where
$$\alpha' = \left(\alpha_i^j - \sum_{k \in M \setminus \{j\}} \left(EMA_i^{k\alpha}(N, M, \mathcal{E}, d) - \alpha_i^k\right)\right)_{i \in N}$$
 and $d^j \in \mathbb{R}^N$ is the vector of claims for issue j .

• $EMA^{\alpha}(N, M, \mathcal{E}, d)$ is single-issue consistent.

Properties of the extended minimal allocation rule

Theorem An extended minimal allocation rule EMA^{α} is the ext-CEA rule if and only if for any CMIA problem (N, M, \mathcal{E}, d) and for all $j \in M$

$$EMA^{\alpha}(N, M, \mathcal{E}, d)_{|\{j\}} = GEA\left(N, E^j, d^j, \left(\delta_i^j = \sum_{k \neq j} x^{*k}_i\right)_{i \in N}\right),$$

where
$$x^* = EMA^{\alpha}(N, M, \mathcal{E}, d)$$
.