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Abstract 

 

We propose a discrete time probabilistic model of depositor behavior which takes into 

account the information flow among depositors. In each time period each depositors’ current 

state is determined in a stochastic way, based on its previous state, the state of other 

connected depositors and the strategy of the bank. The bank offers payment to impatient 

depositors who accept or decline them with certain probability, depending on the offered 

amount. The connections between depositors affect the evolution of the state trajectory as 

well: the more other connected depositors demand money from the bank, the larger is the 

probability that the depositor turns also impatient. Our principal aim is to see how are the 

optimal offers of the bank if it wants to keep the expected chance of a bank run under a 

certain level and minimize its expected payments, while taking into account the connection 

structure of the depositors. We show that in the case of the proposed model this question 

results in a nonlinear optimization problem with nonlinear constraints, and that the method 

is capable of accounting for time-varying resource limits of the bank. Optimal offers increase 

a) in the degree of the depositor; b) in the probability of being hit by a liquidity shock, and c) 

the effect of a neighboring impatient depositor. 
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Optimális kifizetések kapcsolatban álló betéteseknek 

zavaros időkben – Markov-lánc megközelítés 

 

Csercsik Dávid – Kiss Hubert János 

 

Összefoglaló 

 

Egy diszkrét idejű valószínűségi modellt írunk fel a betétesi döntések vizsgálatához, melyben 

figyelembe vesszük a betétesek közötti információáramlást. Minden időpontban a betétes 

állapota sztochasztikusan határozódik meg a korábbi állapotának, a vele kapcsolatban álló 

betétesek állapotának és a bank stratégiájának függvényében. A bank kifizetést ajánl fel a 

türelmetlen betéteseknek, akik az ajánlat nagyságától függően azt elfogadják vagy elutasítják 

bizonyos valószínűséggel. A betétesek közötti kapcsolatok is befolyásolják az állapot 

változását: minél több olyan betétes követeli a pénzét a banktól, akivel az adott betétes 

kapcsolatban áll, annál nagyobb a valószínűsége, hogy ő is türelmetlen lesz. A fő célunk az, 

hogy megvizsgáljuk a bank optimális ajánlatait, ha a bankroham esélyét egy bizonyos szint 

alatt akarja tartani és egyben a kifizetéseket is minimalizálni szeretné, figyelembe véve a 

betétesek kapcsolati hálóját. Megmutatjuk, hogy ez egy nem lineáris optimalizációs probléma 

nem lineáris korlátokkal, ami képes figyelembe venni a bank időben változó 

erőforráskorlátját is. Az optimális ajánlatok nőnek a) a betétes fokszámával; b) a likviditási 

sokk bekövetkezésének valószínűségével; c) és a szomszédos türelmetlen betétesek hatása 

miatt. 
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is the probability that the depositor turns also impatient. Our princi-
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keep the expected chance of a bank run under a certain level and min-
imize its expected payments, while taking into account the connection
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1 Introduction

Banks and other financial intermediaries convert short-term liabilities into
long-term and often illiquid assets, a process called maturity transformation.
Liquidating the assets is generally costly, hence if many depositors or in-
vestors attempt to withdraw their funds from the bank or from other forms
of financial intermediation, then liquidity problems may arise, that may spark
a bank run and result in solvency problems through fire sales. If depositors
anticipate such potential problems, then it may in turn make them more
prone to withdraw. Moreover, during financial crisis it is even more likely
that depositors are concerned about the liquidity and solvency of their bank,
making bank runs more probable also.

In traditional bank run models [2, 5] banks are supposed to determine
payment to those who withdraw as a result of a maximization problem. The
bank maximizes the overall expected utility of its depositors. Depending on
the specified environment, these models either allow a bank run outcome [2]
or they do not [5]. In this paper we take a different approach. In times of
crises, it makes sense to assume that the most important objective of the bank
is to survive. More precisely, it wants to keep the probability of a potentially
devastating bank run very low at a minimum cost. The bank’s intention
to minimize the cost (in our case the payments to depositors) in times of
financial distress is due to the uncertainty about the duration of the crisis and
unforeseeable contingencies. Hence, the bank wants to keep as much funds
available as possible to be prepared for future potential difficulties. However,
it aims also to pay to those who withdraw smoothly so that rumours about
problems of receiving a payment from the bank do not set off a bank run.

Our main aim is to understand the optimal payments of the bank dur-
ing crises when the bank wants to minimize payments, but also maintain
sufficiently low the probability of bank runs given the connections between
depositors. Unlike in other models, depositors’ decision is assumed to be
determined in the following way. Each bank customer starts as a depositor
without urgent liquidity needs (that is, they are patient in bank run par-
lance). However, in any period each depositor may be hit by a liquidity
shock, turning a patient depositor into an impatient one. Impatient deposi-
tors have immediate liquidity needs so they withdraw money from the bank
as soon as they can. When they contact the bank to withdraw money, the
bank makes them an offer that they can accept or reject. The probability
of accepting the offer depends on the amount that is being offered. The
larger the amount, the more likely that the depositor accepts. Accepting or
not does not only affect the bank and the depositor in question, but may
have an additional effect. Depositors are connected by an underlying social
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network and if a patient depositor is connected to an impatient depositor,
then the probability to become impatient increases. A possible explanation
is that if a depositor notes that the number of those who want to withdraw
from the bank increases, then she may interpret it as people trying to get
out their funds due to some problem with the bank. In such a case it may
be optimal to withdraw as well, because if a depositor waits too long while
the rest withdraws, then she may have problems to recover her funds. Once
an impatient depositor accepts the offer from the bank, she ceases to be im-
patient and her effect on other depositors disappears as well. We define a
bank run as a situation in which there is no more patient depositor because
everybody wants to withdraw or has done so already. We compute how the
payments to depositors who want to withdraw should be so as to minimize
these payments, but also to keep the probability of a bank run low, taking
into account how depositors affect each other through their social network.

Even though bank run models differ in important points (e.g. whether
there is aggregate uncertainty about the liquidity needs), but almost all mod-
els have multiple equilibria, one of which involves bank runs. This paper also
admits bank runs as the bank sets payments in a way that the probability
of runs is reduced, but need not be zero. However, we do not have equilibria
as depositors do not make strategic decisions. Depositors in our model react
as an automaton to what happens around them, in a non-strategic way. Our
focus is on how banks determine payment optimally in such an environment.
We show that the problem can be neatly formalized as an optimization prob-
lem. However, the general formulation is too complex to be analyzed. Hence,
we focus in detail on a small, tractable problem. We find that depositors with
more connections receive larger optimal offers from the bank, ceteris paribus,
reflecting the idea that the bank attempts to avoid that these depositors in-
crease the probability that the depositors they are connected to become also
impatient. We also find that the lower is the probability of bank runs that a
bank tolerates, the larger is the optimal offer, all other things held constant.
It is intuitive because through larger offers the bank reduces the probability
of rejected offers that may lead to a bank run. As expected, the optimal pay-
ment to impatient depositors increases as the probability of liquidity shocks
increases. In our examples, the optimal offers are almost linear in the proba-
bility of being hit by the liquidity shock, but the expected cost increases often
non-linearly in the same parameter. We show also through our example that
the larger is the effect that an impatient depositor exerts on her neighbors,
the larger is the optimal offer, ceteris paribus. We find also that the sparser is
the connection structure between depositors, the less they affect each other,
hence the optimal offers from the bank are also smaller. We show also that
the same analysis can be carried out in more complicated models that take
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into account feasibility constraints and allow for time-varying offers. Most
importantly, even in these more intricate setups we find that more connected
depositors receive larger offers from the bank.

There are several institutions and policies that are designed to handle
problems that may arise during crises. The most prominent is deposit insur-
ance that guarantees the recovery of deposits in case the bank has liquidity
or other problems. There are several issues that make deposit insurance an
imperfect solution. It entails moral hazard since the insurance of deposits
may motivate banks to take on excessive risks. The coverage is limited both
in size and scope, so depositors with a large deposit and investors with unin-
sured investments still remain a concern for the bank. For these reasons other
ways of coping with financial distress have been used also. The most frequent
alternative is liquidity suspension and rescheduling of payments. Our paper
can be viewed as an attempt to formalize how this rescheduling should be
if connections between depositors matter and the bank aims at minimizing
payments to depositors, but also wants to keep the probability of bank runs
low. In many instances, the renegotiation of payments is done by the bank-
ing authority. Ennis and Keister [3] have examples of how such rescheduling
occurred in some countries.

Note that many non-bank institutions (like mutual funds) engage also in
maturity transformation and in their case short-term liabilities also retain
a debt-like structure. Generally, the investments these institutions have are
susceptible to investor run as well. In general, consider any firm or financial
institution that owns to investors and negotiates with them about the terms
of repayment, knowing that those investors may be connected. Our analysis
applies to them as well. A further motivating example may be countries that
struggle to pay their sovereign debt. Consider for instance Argentina that
restructured its debt several times in the last decade. During this process
the affected bondholders are offered payments (often in form of longer term
bonds) that are lower than the original bonds promised. Obviously, the
country that is dealing with the bondholders tries to minimize the payments,
but wants the bondholders to accept the offers it makes. If a bondholder
accepts an offer, then it may influence the willingness of other bondholders
to accept the offer as well [1].

The rest of the paper is organized as follows. In section 2 we present
briefly the related literature. Section 3 introduces the model, while section
4 states the optimization problem and solves it in detail for an example.
Section 5 considers another examples that is more complicated as it adds
features occurring in real life. Section 6 contains discussion and conclusions.
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2 Related Literature

In this section first we show that that depositors react to the decisions of
other depositors that they observe and then discuss issues related to the
importance of setting the right payment to depositors.

In our model, depositors react to other depositors’ observed decisions.
More precisely, we assume that the chance that a depositor becomes impa-
tient is growing in the number of impatient depositors that she is linked to.
Empirical studies support this idea. Kelly and O Grada [7] investigate a
bank run episode in New York in the 19th century and show that the most
important factor determining whether an individual panicked or not was her
county of origin in Ireland. Immigrants from the same country clustered
in the same neighborhood and observed each other, so if a depositor saw a
large number of individuals trying to withdraw, then she was more likely to
do so as well. Iyer and Puri [6] study a bank run that occurred in India
in 2001 and demonstrate that observing withdrawals in one’s social network
increases the probability that the depositor in question follows suit. Starr
and Yilmaz [11] show that during a bank run incident in 2001 that occurred
in Turkey, small and medium-sized depositors of an Islamic bank seemed to
observe withdrawals of their peers and the larger the mass that withdrew,
the more depositors did the same the next day. Experimental evidence also
suggests that observability plays an important role in the emergence of bank
runs (see, for example [4, 10, 8, 9]). A common finding of these experimental
studies is that if previous withdrawals are observed, then they induce fur-
ther withdrawals. These empirical and experimental findings make it clear
why we consider important to introduce into our model that depositors are
affected by the withdrawal decision of depositors they are connected to.

In the theoretical literature banks are supposed to act in the interest of
the depositors and hence they set payments in a way that maximizes the
overall utility of depositors. Important for our study, Green and Lin [5] find
that the optimal payment depends on the self-reported type of the depositors
and their position in the sequence of decision. As a consequence, depositors
who withdraw early may end up with quite different payments. Our model
has that feature as well, although in our case differences in payments are due
to the connection structure between depositors. Ennis and Keister [3] use
a Diamond and Dybvig [2] model and show that if the bank realizes that a
bank run is underway, then it re-optimizes the payments to the subsequent
depositors. Our idea is similar in the sense that the bank adapts to hard
times, but the optimization problem in our model is very different. Unlike
[3], we do not maximize the utility of the remaining depositors, but minimize
the payments to them so that they accept it with sufficiently large probability
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and do not ignite a bank run. Furthermore, in the proposed model the bank
designs a protocol for the withdrawal period, and assumes that it wont be
possible to reevaluate the situation in between the first withdrawal request
and the consequences. Considering that reactions to the first withdrawal may
appear within days (or even hours), this seems to be a plausible scenario.
According to this, the most straightforward interpretation for the discrete
time periods of our model is the scale of days.

We are aware of only one paper that uses Markov chains to study bank
runs. Temzelides [12] studies how depositors are affected by the number of
withdrawals from their and other banks in the previous period. He investi-
gates myopic best response in an evolutionary banking setup. In his model
there is no underlying social network that determines who affects whom, but
each depositor observes other depositors’ past action. Neither does he study
the optimal payment, so our approaches are quite different.

3 Model

Assume that there are n depositors that are located at the nodes of a network
and connections enable observability. Hence, a link connecting two depositors
implies that they can observe each other’s action.

To define a Markov chain model, we have to specify the possible states of
the model and the state transition matrix Q which contains the state tran-
sition probabilities. Since the connections of a certain depositor to another
ones matter, we will distinguish between them. This means that the set of
the possible states of the model (S) can be determined as the Descartes prod-
uct over the set of possible states of the depositors (S). To keep the model
as simple as possible, we will assume three possible state for each depositor:

• Patient (P ) This is the basic state of each depositor and following the
literature a patient depositor does not have urgent liquidity need.

• Impatient (I) If a liquidity shock hits a depositor, her state changes
from P to I, meaning that she is demanding money from the bank.
Furthermore, if two depositors are connected and one is impatient, she
increases the probability of the other one becoming impatient. We as-
sume that this effect is additive, so two impatient acquaintances double
the chance of a P → I transition.

• Out (O) We assume that the bank offers a certain amount of money
to impatient depositors, who may accept of reject the offer. We sup-
pose that the chance that the impatient depositor accepts the offered
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quantity increases with the offered sum. If the depositor accepts the
offered amount of money, her state will turn from I to O and ceases to
affect her neighbors thereafter. If she rejects, then she stays in state I
for the next step.

Hence, S = {P, I, O}. Note that all depositors start being patient, and
then may turn impatient. Those impatient who accept the offer of the bank
enter state O. It is not possible to go directly from P to O and any move
in the reverse direction (for example from I to P ) is disregarded also. Given
this setup, the total number of states of the system will be 3n where n
is the number of depositors. For sake of tractability we use the following
assumptions:

• Connection structure. The structure of the links connecting the depos-
itors may be described by a simple undirected graph, whose adjacency
matrix is A.1 Take any two depositors. If they are linked, then the
corresponding entry in the adjacency matrix is 1. If one of them is
impatient, while the other one patient, then the former affects the lat-
ter one by increasing the probability that it turns impatient as well.
Following the standard language of network analysis, if two depositors
are connected, then they are neighbours, and the number of connec-
tions a depositor has is called degree. Hereafter, we assume that the
bank knows the connection structure. We admit that this is a strong
assumption, but banks may have a lot of information about deposi-
tors including information about connections between them. Based on
[7, 6], depositors living in the same neighborhood are likely to observe
each other. Starr and Yilmaz [11] suggest that deposit size also may
be a determinant of which depositor observes wich other depositors.
Banks may take into account such information.

• Homogeneity. Depositors are homogeneous in the following senses: i)
the chance of being hit by the liquidity shock is the same for all pa-
tient depositors (and independent of the degree); ii) when offered a
certain amount by the bank, the probability of accepting that amount
(and hence change into the state O) is also the same for all impatient
depositors (and again independent of the degree).

• Degree-dependent payments. Let oi,deg(i)(t) be the sum offered to depos-
itor i at time t where deg(i) is the number of neighbors of i. The bank

1A straightforward generalization of the model could be where we assume asymmetric
information, and thus a directed A.
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distinguishes depositors based only on their degree. In other words,
assuming time-independent payments, two depositors with the same
degree receive always the same offer from the bank if in any given state
and time. Since oi,deg(i)(t) = oj,deg(j)(t) if deg(i) = deg(j), hereafter we
use odeg(t).

Note that the assumptions on the connection structure and homogeneity
imply that depositors in the model differ only in their degree. As a conse-
quence, there are 2n−1 possible connection structures.

3.1 State transition probabilities

Now we are ready to define the state transition probabilities. Any state
σ in S can be composed as s1s2...sn where si ∈ S = {P, I, O}. Let us
furthermore use the following notation convention: σ(t, i) denotes si(t), the
state of depositor i at time t.

Within a given time period, we assume that the following events take
place simultaneously:

• Patient depositors turn impatient with some probability (that is deter-
mined by the probability of being hit by the liquidity shock and the
number of impatient neighbors).

• Impatient depositors decide if they accept or reject the offers by the
bank.

We assume that transition events of the depositors in one step are inde-
pendent, so the transition probability from state σ(1) = s1(1)s2(1)...sn(1) at
t = 1 to σ(2) = s1(2)s2(2)...sn(2) at t = 2 can be written as

p(σ(1) → σ(2)) =

n∏

i=1

p(si(1) → si(2)) (1)

where p(si(1) → si(2)) denotes the probability that depositor i changes her
state from si(1) to si(2) where si(1), si(2) ∈ S. Next, we determine the single
transition probabilities.

• The chance of a liquidity shock hitting each patient depositor at each
time period is denoted by ps. We assume that impatient depositors
affect the behavior of patient neighbors, and may induce P → I transi-
tions: δ denotes the level of how much an impatient depositor connected
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to a patient one increases the P → I transition. This way the patient-
impatient transition at time t for patient depositor i may be calculated
as

ps + kI
i (t)δ, (2)

where kI
i (t) is the number of impatient depositors connected to i at

time t.2 The chance of staying in the P state is is 1− p(P → I).

• The chance that an impatient depositor i accepts the offered money
at time t is denoted by f(odeg(i)(t)) where f is a monotone increasing
function, assumed to be the same for each depositor. The chance of
staying in the I state is is 1− p(I → O).

To characterize the evolution of the system we introduce a lexicographic
ordering of the states (e.g. PPP...PP = σ1, PPP...P I = σ2 etc. - for
an example, see Appendix A). Furthermore, we define the state transition
matrix Q ∈ R3n×3n . Qi,j is equal to the probability of the transition from
state σi to σj . The probability of state i at time t is given by the ith element
of the vector x(t) ∈ R3n . We will denote the probability of state j (σ = σj)
at time t shortly with ptj (ptj equals the jth element of x(t)). Therefore,

x(t) = (QT )tx0 (3)

where x0 ∈ R3n is a vector describing the initial state of the system.
Thus, x0 = (1, 0, 0, ..., 0) denotes that the probability of the initial state (in
our lexicographic ordering σ1 = PPP...P ) is 1.

Let us define the cost of a given state σi at time t as the sum of offers
accepted in the last time period (corresponding to I → O transitions from
t− 1 to t)

c(σi(t)) =
∑

j: σ(t,j)=O, σ(t−1,j)=I

odeg(j)(t− 1). (4)

That is, the sum offers that have been accepted at time period t (but not
before) by depositors with degree j that ranges from 0 to n-1. The total (or
cumulated) cost (C) of σi(t) may be defined as

C(σi(t)) =

t∑

k=2

c(σi(k)) (5)

As already pointed out, it is plausible to believe that in turbulent times
banks attempt to minimize the payments to depositors who want to with-
draw, but at the same time the bank tries to keep the probability of a bank

2In general we do not assume the connection structure to change, but the model frame-
work is capable of handling such cases.
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run at a low level. As we will show, with the proposed formalized model we
are able to exactly grasp this intuition.

4 Optimization with no offer constraints and

time independent offers

In this section we assume that the offers are time-independent, which means
that a depositor with a certain number of neighbors receives the same offer
in each time period if in impatient state (and so we omit the argument t in
odeg(i)(t)).

Let E[C(t)] denote the expected payments to depositors at time t. In
general,

E[C(t)] =
∑

i

C(σi(t))pi(t) (6)

where pi(t) is the probability of state σi at time t. However, since the
offers are time-independent, we may write

E[C(t)] =
∑

j: O∈σj

odeg(j)pi(t), (7)

so we omit the argument t in odeg(i)(t).
Assuming time-independent offers, the expected cost of the bank E[C(t)]

depends, on the the probability of those states at time t, which have at least
one O, and the position of those O-s in σ. The position determines the
degree which determines the payment (since payments only depend on the
depositors degree) to those depositors that were impatient and accepted the
offer.

Actual payments are made only to those impatient depositors who accept
the offer. Since offers are assumed to be time-independent, in this case it
does not matter when the given state changed from I to O (in other words,
when the offer was accepted) - since amounts offered for a certain (impatient)
node are time-independent.

To formulate the optimization problem, we also need to define what we
consider a bank run.

Definition 1 Any state where no patient depositor is present is considered

as a bank run.3

3Note the irreversibility: Since there is no O → I, O → P , or I → P transition, once
the system is in a state of bank run, all following states will be bank runs.
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The optimization problem of the bank is the following at time t and given
a connection structure A:

min
o1,...,od

E[C(t)] subject to PBR(t) < P̄BR (8)

where d is the maximal degree in the connection structure, and

PBR(t) =
∑

i:P /∈σi

pi(t) (9)

where P /∈ σi refers to those states which do not include patient (P) depos-
itors. PBR(t) < P̄BR denotes that we want to keep the probability of bank
run below some given threshold.

While this is a general optimization, it is too complex to be analyzed.
The size of the state transition matrix grows exponentially with the number
of the modelled depositors, and the complexity of the resulting expressions
may be very high even in the case of quite simple examples that we show
next. One may partially overcome this problem by merging states, or do-
ing simplifications regarding the Markov chain model. Moreover, nonlinear
optimization problems with nonlinear constraints such as e.g. (8) are not
easy to handle, and the solvers may run into local extrema (Bertsekas 1999).
Furthermore, the needed computing capacity may be also significant due to
the complexity of the functions. For these reasons, in the rest of the paper
we limit ourselves to small examples to gain insight into how the optimal
payments and expected costs vary as the environment changes.

In this section we assume that the quantities offered by the bank to the
impatient depositors are not constrained by any consideration regarding their
upper bound. In other words, the bank may offer arbitrarily high sums in
order to control the expected chance of a bank run, there is no feasibility
constraint.

4.1 Example 1

Consider an example with three depositors. We fix the connection structure
as depicted in Figure 1

Furthermore, we assume the most simple possible case regarding the
function f , that determines the probability of accepting an offer, namely
f(odeg(i)) = odeg(i). This implies that we assume on ∈ [0, 1)∀n. We use a
lexicographic ordering of the states described in Appendix A.

We are interested in the bank’s optimal strategy. Concretely, let us de-
termine which offers should the bank make to impatient depositors, if the
initial state of the system (e.g. PPP ) is known, and the bank wants to keep
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Figure 1: Topology 1: Connection of the depositors in the case of example 1.

the chance of a bank run (PBR) under a certain probability level while also
aiming to minimize the expected cost.

At t = 1 the probability of a bank run is independent of the offered
sums and is equal to PBR(1) = p3s. Regarding t = 2, PBR(2) is equal to
p8(2) + p15(2) + p16(2) + p17(2) + p18(2) + p19(2) + p20(2) + p21(2), which can
be calculated from equation (3), assuming x0 = [1 0 0...0]T (that is, at the
beginning each depositor is patient). Note that in Appendix A we define all
potential states that may arise with three depositors, and states 8, 15, 16,
17, 18, 19, 20 and 21 are those that do not contain any patient depositor. In
Appendix B, we develop the probabilities for all the possible 27 states and
it yields that at t = 2 the probability of bank run is

PBR(2) = δ2p3s − 2δ2p2s + δ2ps + 4δp4s −

12δp3s + 8δp2s − p6s + 6p5s − 12p4s + 8p3s, (10)

which is also independent of the offers. This is not surprising. If a depositor
becomes impatient at t = 1, with the offer we may influence the probability
that she changes to O at t = 2. However, regarding patient depositors (on
whom the bank run definition is based on), the important thing is how long
their impatient neighbors remain in the I state.

Consider the following example. At t = 1 the state IPP appears. With
the offer at t = 1 we may affect the probability of e.g. IPP and OPP at
t = 2, but it makes no difference in terms of whether the next state will be
considered as a bank run or not. Recall the bank run definition according
to which e.g. IPP and OPP are regarded as the same. Depositor 2 and 3
are affected by the I state of player 1 at the transition from t = 1 to t = 2,
irrespective of the offer to depositor 1 at t = 1. On the other hand, at t = 3
it matters whether depositor 1 remained in state I at t = 2 as well, or not
(which in turn already depends on the offer).

As expected, the offers first appear in the probability of bank run at t = 3
(PBR(3)):

12



PBR(3) = 36δp2s + 7δ2ps − 120δp3s − 4δ3ps + 156δp4s + δ4ps − 100δp5s + 32δp6s −

−4δp7s + 27p3s − 81p4s + 108p5s − 81p6s + 36p7s − 9p8s + p9s − 43δ2p2s + 70δ2p3s +

+12δ3p2s − 46δ2p4s − 12δ3p3s − 2δ4p2s + 13δ2p5s + 4δ3p4s + δ4p3s − δ2p6s − 6δp2so1 −

−6δp2so2 + 18δp3so1 − 3δ2pso2 + 18δp3so2 − 20δp4so1 + 4δ3pso2 − 20δp4so2 +

+10δp5so1 − δ4pso2 + 10δp5so2 − 2δp6so1 − 2δp6so2 + 8δ2p2so1 + 18δ2p2so2 −

−14δ2p3so1 − 30δ2p3so2 + 8δ2p4so1 − 12δ3p2so2 + 20δ2p4so2 − 2δ2p5so1 + 12δ3p3so2 +

+2δ4p2so2 − 5δ2p5so2 − 4δ3p4so2 − δ4p3so2 (11)

Since there are significantly more possible ways for a bank run to form
at t = 3 than at t = 2, this expression is more complex than the one in (10).

In our case the expected costs are as follows:

E[C(3)] = ps(3o
2
2−2o31+6o21−o32+2o21δ+2o22δ−2o21ps−o22ps−2o21δps−2o22δps) (12)

To fix ideas, we compute the probability of bank run and the expected
costs at t = 3. Without loss of generality, assume that the probability of being
hit by a liquidity shock is 7% and having an impatient neighbor increases by
2.5% the chances that a patient depositor turns impatient as well (ps = 0.07,
δ = 0.025) and suppose that f(odeg(i)) = odeg(i).

Given the payments to depositors with different degree, the probability
of bank run and the expected costs are the following:

o1 = 0.1 o2 = 0.1  PBR(3) = 0.011, E[C(3)] = 0.006

o1 = 0.8 o2 = 1  PBR(3) = 0.0106, E[C(3)] = 0.1949

o1 = 0.1 o2 = 0.8  PBR(3) = 0.0106, E[C(3)] = 0.1015

o1 = 0.1 o2 = 1  PBR(3) = 0.0102, E[C(3)] = 0.2904

As expected, an increase of the offers implies the decrease of the chance
of a bank run. Second, by increasing the offer to the depositor with the
higher degree is more efficient since it results in almost the same PBR(3)
with significantly lower expected cost. This highlights how important may
be to differentiate between depositors regarding the offers.

To determine the optimal strategy of the bank at t = 3, we have to
solve the following nonlinear optimization problem with nonlinear inequality
constraints

13



min
o1,o2

E[C(3)] subject to PBR(3) < P̄BR (13)

Regarding the above problem, the NLOPT function (Johnson, S. G.,
2010) of the MATLAB OPTI toolbox was used (Currie, J. and Wilson D.I.
2012) with the algorithm LDSLSQP. NLOPT was chosen based on its ability
of handling nonlinear objective function and constraints, on its numerical
stability and on its advantageous convergence properties. Considering δ =
0.08, the following figures show, how the optimal payments and expected
cost depends on the model parameters. In these figures we see that if the
chance of a liquidity shock (ps) is low enough, the probability of a bank run
remains under the defined threshold even if we offer 0 return to impatient
depositors. However, as the probability of becoming impatient (ps) increases,
the importance of these offers becomes significant. Furthermore, if we observe
the y-axis in the graphs of Figure 2, we see that the optimal offer to a
depositor connected to two other depositors is larger, as expected. We defined
the function of accepting offer (f) as the identity function, and thus the
offered sum is equal to the acceptance probability, so we restrict our analysis
to the range where o1, o2 < 1.

Figure (2) shows that the optimal offers to depositors with one and two
connected depositors (oopt1 and oopt2 ) increase as the probability of being hit
by a liquidity shock (ps) is increased (as expected), and also shows how the
maximum probability of bank runs that the bank admits (P̄BR) modulates
this increase. The larger is the acceptable probability of bank runs, the lower
is the offer, ceteris paribus.
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Figure 2: The dependence of optimal offers oopt1 and oopt2 on ps at various
levels of P̄BR .

Figure (3) shows how the expected cost changes in function of the prob-
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ability of a liquidity shock (ps) and the acceptable probability of bank runs
(P̄BR). Note that while optimal offers are often almost linear in ps, the
expected cost increases non-linearly in ps once ps.

Finding 1: Anything else held constant, optimal offers increase in the
probability of a liquidity shock and in the number of connections. The larger
is the probability of bank run that a bank tolerates, the lower are the optimal
offers and hence the expected costs, ceteris paribus.
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Figure 3: The dependence of E[C(3)] on ps at various levels of P̄BR.

Figures 4 and 5 show how the sensitivity to neighbor depositors who are
impatient (δ) affects the dependence of the optimal offers (oopt1 , oopt2 ) and
the expected cost (E[C(3)]) on the probability of being hit by a liquidity
shock (ps). We assume P̄BR = 0.02 in these cases. As expected, the more
an impatient depositor increases the probability of turning impatient of her
neighbor(s) (δ), the larger is the optimal offer to her so that the probability
of bank run can be kept at the desired level. Note also that the expected cost
increases non-linearly in δ as the probability of being hit by a liquidity shock
(ps) grows beyond a certain threshold (in our example it is around 0.07).

The interpretation of the bank run definition may be subject to different
considerations. Here we applied a simple approach, however one may define
more complex scenarios (e.g. we may consider a state as a bank run if
less than half of the depositors is in P state). Such alternative bank run
definitions may be easily interpreted in the proposed framework.

4.1.1 The role of connections

To get an impression how the connections of the depositors affects the results,
we modify the connection structure of Example 1. Now, as depicted in 6,
depositor 1 is not connected to depositor 2.

In this case we obtain that
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Figure 4: The dependence of optimal offers oopt1 and oopt2 on ps at various
levels of the connection parameter δ .
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Figure 6: Topology 2: Connection of the depositors in the case of example 2.
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PBR(2) = p2s(2− ps)(2δ + 4ps − 2δps − 4p2s + p3s) (14)

and

PBR(3) = p2s(p
2
s − 3ps + 3)(6δ + 9ps − 14δps − 2δo1 + 10δp2s +

2δ2ps − 2δp3s + 2δ2o1 − 2δ2 − 18p2s + 15p3s − 6p4s +

p5s − 2δp2so1 − 2δ2pso1 + 4δpso1). (15)

Moreover,

E[C(3)] = ps(6o
2
1 − o30 + 3o20 − 2o31 + 2o21δ − o20ps − 2o21ps − 2o21δps). (16)

Now we have only depositors with zero or one neighbor. Note that offer
to depositors without any connection (o0) does not appear in equations 14
and 15) since an isolated depositor does not affect anybody else. The offer
o0 does not influence the probability of an isolated depositor changing to I.
Once an isolated depositor is in state I, we may enhance her transition to
O with a larger o0, but this does not affect the probability of a bank run.
This is the case because an isolated depositor in state I does not influence
anybody else, so from the perspective of bank run it does not matter if she
is in state I or O. Trivially, if we want to minimize the expected cost, we
choose o0 to be zero.

Without loss of generality, we consider the following parameters: δ =
0.025, P̄BR = 0.02. We determine now the optimal offer to depositors with
one connection (o1). In Figure 7 we see that in the case of less connections
(that is, compared to topology 1), a larger ps value is required to trigger
the role of the offers (about 0.08 instead of about 0.07). The connection
parameter δ modulates the results similarly to the previous case depicted in
Figure 4. As expected, if the connection structure is sparser (topology 2), the
depositors influence each other less, so the expected cost to prevent a bank
run is always lower. It reflects the intuitive idea that less connection implies
less channels to affect other depositors, so the peril of contagion between
depositors is more limited.

When there is no connection between depositors, the optimal offer to
depositors is zero as we explained before. In the case when all depositors are
connected to each other (topology 3),
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Figure 7: The dependence of oopt1 and E[C(3)] on ps and δ, in the case of
topology 2.

PBR(3) = 54δp2s + 21δ2ps − 180δp3s − 18δ3ps + 234δp4s +

+3δ4ps − 150δp5s + 48δp6s − 6δp7s + 27p3s − 81p4s + 108p5s −

−81p6s + 36p7s − 9p8s + p9s − 111δ2p2s + 174δ2p3s + 48δ3p2s −

−114δ2p4s − 42δ3p3s − 6δ4p2s + 33δ2p5s + 12δ3p4s +

+3δ4p3s − 3δ2p6s − 18δp2so2 − 9δ2pso2 + 54δp3so2 +

+12δ3pso2 − 60δp4so2 − 3δ4pso2 + 30δp5so2 −

−6δp6so2 + 60δ2p2so2 − 96δ2p3so2 − 36δ3p2so2 +

+60δ2p4so2 + 36δ3p3so2 + 6δ4p2so2 − 15δ2p5so2 −

−12δ3p4so2 − 3δ4p3so2. (17)

and

E[C(3)] = 3o2ps(3− ps + 2δ − o2 − 2δps) (18)

In Figure 8 we see that in the case of full connectedness, a lower ps value,
compared to the previous cases is required to trigger the role of the offers
(about 0.05), and the expected cost is also higher even in the case of relatively
low ps values (compared to Fig. 5).

Finding 2: The connection structure between depositors matters. The
more connections there are between depositors, the larger are the optimal
offers and the expected cost of the bank, ceteris paribus.
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Figure 8: The dependence of oopt2 and E[C(3)] on ps and δ, in the case of
topology 3 (full connectedness).

5 Optimization problem with offer constraints

and time dependent offers

It is a natural to extend the model in a direction which takes into account the
bank’s investments, returns and liquidity, which affects the possible offers.
Moreover, in this section we also allow for the case that the offer changes
in time. This is consonant with some papers that we cited before, as for
instance Green and Lin (2003) and Ennis and Keister (2009) also show that
banks adjust the payments to the new situations. However, we assume that
the bank does not re-evaluate the situation between time periods (in this
case the realized states could be taken into account as certain starting state
of the model, and the optimization could be performed according to this),
all offers are determined prior. While these features make the model more
realistic, they make it more complicated also. Hence, in this section we focus
on the example that we introduced in the last section.

Consider again the topology depicted in Figure 1, and a time horizon of
4 periods. The state-transition matrix Q will be time-dependent, since the
offers at t = 1 and t = 2 may differ. We denote the offer to a depositor with
n neighbors at time t as on(t). Furthermore, we assume that the functions
which describe how the probability of accepting an offer depends on the
offered quantity (f(on(t))) are time-dependent, and they are the same for all
depositors with the same degree. Since the main risk is to leave depositors too
long in the impatient state, we expect that earlier offers should be larger. On
the other hand early offers are limited by early returns. In the optimization
problem below we take this considerations into account.

In this case the probability of bank run at t = 3 is
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PBR(3) = 36δp2s + 7δ2ps − 120δp3s − 4δ3ps + 156δp4s + δ4ps − 100δp5s +

32δp6s − 4δp7s + 27p3s − 81p4s + 108p5s − 81p6s + 36p7s − 9p8s + p9s −

43δ2p2s + 70δ2p3s + 12δ3p2s − 46δ2p4s − 12δ3p3s − 2δ4p2s +

13δ2p5s + 4δ3p4s + δ4p3s − δ2p6s − 6δp2sf(o1(1))− 6δp2sf(o2(1)) +

18δp3sf(o1(1))− 3δ2psf(o2(1)) + 18δp3sf(o2(1))− 20δp4sf(o1(1)) +

4δ3psf(o2(1))− 20δp4sf(o2(1)) + 10δp5sf(o1(1))− δ4psf(o2(1)) +

10δp5sf(o2(1))− 2δp6sf(o1(1))− 2δp6sf(o2(1)) + 8δ2p2sf(o1(1)) +

18δ2p2sf(o2(1))− 14δ2p3sf(o1(1))− 30δ2p3sf(o2(1)) +

8δ2p4sf(o1(1))− 12δ3p2sf(o2(1)) + 20δ2p4sf(o2(1))− 2δ2p5sf(o1(1)) +

12δ3p3sf(o2(1)) + 2δ4p2sf(o2(1))− 5δ2p5sf(o2(1))− 4δ3p4sf(o2(1))

−δ4p3sf(o2(1)) (19)

the above expression is a slight modification of (11).
PBR(4), which depends also on f(o1(2)) and f(o2(2)) can be similarly

derived, however the expression is too long to be detailed here.
Regarding the expected cost, the derivation is not as simple as in section

4, since if a state ends up in O, it does matter when did it change from I to
O. As detailed earlier, the offers in t = 3 do not affect the probability of the
bank run at t = 4, so it is enough to derive the expected costs of the states
at t = 3. Consider a simple example. The expected cost of the state POO
at time t = 3 may be calculated as

p12(3)(p5(2)(2o1(2))+p22(2)(o1(1)+o1(2))+p23(2)(o1(1)+o1(2))+p12(2)(2o1(1)))

where p12(3) is the probability of state 12 at time t = 3, etc. Let us discuss
this expression a bit more in detail. The expected cost of state POO at t = 3
is proportional to its probability p12(3). Furthermore there are 4 ways to get
to POO = σ12:

• From PII = σ5 - in this case both depositor 2 and depositor 3 (depos-
itors with one neighbor) accept the offer at t = 2, so the relevant term
is p5(2o1(2)) (remember that o1(2) refers to offers with one neighbor at
time t = 2).

• Form PIO = σ22 - in this case depositor 3 accepted the offer at t = 1
(since he is already in O state), while depositor 2 accepted the offer at
t = 2 which implies p22(o1(1) + o1(2)).
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• Form POI = σ23 - in this case depositor 3 accepted the offer at t = 2,
while depositor 2 accepted the offer at t = 1 which implies p22(o1(1) +
o1(2)).

• Form POO = σ12 - in this case both depositors 2 and 3 accepted the
offer at t = 1: p12(2o1(1)).

With the summation of all such expressions we can derive the expression
for the expected cost at t = 3.

We assume the non-linear offer-acceptance function

f(o) =
1

(1 + exp(1.2−x
0.075

))

depicted in Figure 9 for all depositors.
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Figure 9: f(oi): The function describing how the probability of acceptance
depends on the offered sum.

In this case, the resulting optimization problem is as follows

min
o1(1),o2(1),o1(2),o2(2)

E[C(3)] st.

o1(1), o2(1), o1(2), o2(2) > 0 (20)

5.1 A numerical example with time-dependent offers

Consider the following numerical parameters

ps = 0.1 δ = 0.02 P̄BR = 0.05
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The optimization process returns the solution [o1(1) o2(1) o1(2) o2(2)] =
[1.127 1.253 0.993 1.068]. In this case E[C(3)] = 0.0216. As before, the
depositor with more connections receives a larger amount in both periods.
Moreover, the degree-dependent offers in period 1 are larger than in period
2. This latter finding is intuitive because the more periods lie ahead, the
more risky is to have an impatient depositor that may negatively affect other
depositors.

5.2 A numerical example including offer constraints

Suppose that there are three depositors characterized by the offer-acceptance
function f(oi) depicted in Figure 9 and each of them places 1 unit of money
into the bank before t = 0, with an expected return of 1.3 at t=4. The bank
has 1 unit of own liquidity, and invests the 3 units with an expected return of
4 at t = 4. The return profile however is incremental, but nonlinear in time,
as depicted in Figure 10. The bank receives 1.2 unit at t = 1, an additional
0.4 at t = 2, an additional 1.4 at t = 3 , and finally one more unit at t = 4.
Once more, considering the bank run at t = 4, the latest offers which matter
are given at t = 2, since the critical issue is how long impatient depositors
stay in impatient state, and so offers at t = 3 do not count. The topology
that we consider is as in Figure 1.

1

2.2
2.6

4

5

t=0 t=1 t=2 t=3 t=4

Figure 10: Own liquidity and investment return profile for the bank

If any of the depositors is hit by a liquidity shock, she may withdraw from
the bank. In this case the return profile affects the possible offers. Naturally,
each single offer is limited by the actual liquidity (o1(1) < 2.2; o2(1) <
2.2; o1(2) < 2.6; o2(2) < 2.6). That is, the maximum payment to any
depositor is constrained by the available amount in the given period. On the
other hand, the following feasibility constraints are to be considered in the
case of multiple offers.
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• o1(1) + o2(1) < 2.2, 2o1(1) < 2.2.

• o1(1) + o1(2) < 2.6, o2(1) + o1(2) < 2.6, o1(1) + o2(2) < 2.6

• o1(2) + o2(2) < 2.6, 2o1(2) < 2.6

The first point is clear: If two offers are made at t = 1, and both are
accepted, the potential payment is limited by the liquidity available for the
bank at t = 1. The second point refers to the case if one offer is accepted
at t = 1 and an other at t = 2. In this case the first offer is constrained by
2.2, but in the second step, the bank may only make offer from its remaining
liquidity. If the offer(s) in the first step is (are) rejected, or there is no need
for offers at t = 1 (because), and in the second step two offers has to be
made, the constraints corresponding to the third point describe the effects of
limited liquidity.

We do not consider the case when in either t = 1 or t = 2 three offers
are to be made, or when at t = 2 one (two) offer is made after two (one)
accepted offers, since this would mean that the system is already at a bank
run.

If we consider these offer constraints the resulting optimization problem
will take the following form.

min
o1(1),o2(1),o1(2),o2(2)

E[C(3)]

subject to

PBR(4) < P̄BR

o1(1) + o2(1) < 2.2 2o1(1) < 2.2

o1(1) + o1(2) < 2.6 o2(1) + o1(2) < 2.6 o1(1) + o2(2) < 2.6

o1(2) + o2(2) < 2.6 2o1(2) < 2.6 (21)

Considering ps = 0.1 δ = 0.02 P̄BR = 0.05, this results in
[o1(1) o2(1) o1(2) o2(2)] = [1.067 1.133 1.083 1.184] with
E[C(3)] = 0.027. Similarly to previous results, in each period the depos-
itor with more connections receives a larger offer from the bank. On the
other hand, offers at t = 1 are limited by liquidity constraints, and note that
now the expected cost is higher than in the previous example (section 5.1) if
the objective is to keep the bank run probability under 5% chance. The rea-
son for this is that the offers can not be efficiently distributed because of the
liquidity constraints. Note that although we considered examples with some
parameters, the optimization problem can handle any meaningful parameter
constellation.
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Finding 3: When allowing for time-dependent offers and feasibility con-
straints on offers we find that connections matter. The more connections a
depositor has, the larger is the optimal offer from the bank.

6 Discussion and conclusion

We set up a model that studies the optimal offer from a bank to a withdraw-
ing depositor if we assume that the bank attempts to minimize the payments,
but also the probability of a bank run that is affected by connections between
depositors. More concretely, we assume that a depositor who does not receive
an offer that she accepts makes her neighbors more prone to withdraw. We
claim that our assumptions and setup captures important features on pay-
ment decisions during crises. We show that the optimization problem can
be formulated neatly in spite of non-linearities. However, due to the very
high number of potential connection structures between depositors finding a
general solution proved elusive. Therefore, we use three variants of a simple
example to gain some insight into the role of connections. An overarching
finding in these examples is that connections matter. The more connections
a depositor has, the larger is the optimal offer from the bank. Consequently,
the denser is the connection structure, the larger is the expected payment of
the bank to the depositors.

One clear limitation of the applicability of the described model corre-
sponds to the number of depositors taken into account. The size of the state
transition matrix, and so the complexity of probability formulas used in the
calculation grow exponentially with the number of depositors. A possible ap-
proach to overcome this problem is the application of epidemic models (see
Keeling, 1999) to describe the spreading of impatience among depositors. A
somewhat similar methodology in the case of financial contagion has been
described by Demiris (2012). On the one hand, these methods represent a
natural possibility to describe larger networks, on the other hand we see that
the approach presented in this paper has its benefits as well. As we distin-
guish between depositors, individual characteristics (e.g. individual deposit
size, individual risk aversion measures - corresponding to the function f), and
thus more detailed knowledge about depositors may be taken into account.
The homogeneity assumption described in section 3 can be relaxed, and the
necessary equations may be similarly derived.

Furthermore, although we have shown small examples with a limited num-
ber of depositors, such an analysis may make sense. As already mentioned,
Starr and Yilmaz (2007) study a bank run episode in Turkey. They group
depositors according to the size of their deposits (small, medium-size, large)
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and analyze how they reacted to each other’s decision. For instance, did
small depositors withdraw more after observing a surge in withdrawals by
large depositors? They find that while large depositors observe small and
medium-size depositors, the latter do not seem to observe the former ones.
This suggests an intricate connection structure between these groups.4 If
we interpret depositors as representing groups, then our model may help to
understand this kind of situations.
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Appendix A

We use the following notation for the states of example 1:

state notation state notation state notation state notation
PPP σ1 PPO σ9 IIO σ16 PIO σ22
PPI σ2 POP σ10 IOI σ17 POI σ23
PIP σ3 OPP σ11 OII σ18 IPO σ24
IPP σ4 POO σ12 IOO σ19 IOP σ25
PII σ5 OPO σ13 OIO σ20 OPI σ26
IPI σ6 OOP σ14 OOI σ21 OIP σ27
IIP σ7 OOO σ15 III σ8

4A directed graph may capture the idea that one group observes another one,
but observability in general is unilateral.
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Appendix B

The state probability vector of example 1 at t=2
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−ps(ps − 1)5 − ps(ps − 1)3(o1 − 1)(δ + ps − 1)
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−ps(ps − 1)5 − ps(ps − 1)2(o2 − 1)(δ + ps − 1)2

p2
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(ps − 1)2(o1 − 1)(δ + ps − 1) + p2
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s
(ps − 1)4 + ps(δ + ps)(ps − 1)3(o1 − 1) + ps(δ + ps)(ps − 1)2(o2 − 1)(δ + ps − 1) + p2
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