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mechanisms in electrical energy trade 
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Abstract 

 

Optimal power flow (OPF) problems are focussing on the question how a power transmission 

network can be operated in the most economic way. The general aim in such scenarios is to 

optimize generator scheduling in order to meet consumption re-quirements, transmission 

constraints and to minimize the overall generation cost and transmission losses. We use a 

simple lossless DC load flow model for the description of the transmission network, and 

assume linearly decreasing marginal cost of generators with different parameters for each 

generator. We consider a scenario in which the generation values regarding the OPF are 

calculated by a central authority who is aware of the network parameters and production 

characteristics. Furthermore, we assume that a central mechanism is applied for the 

determination of generator payoffs in order to cover their generation costs and assign them 

with some profit. We analyze the situation when generators may provide false information 

about their production parameters and thus manipulate the OPF computation in order to 

potentially increase their resulting profit. We consider two central payoff mechanisms and 

compare their vulnerability for such manipulations and analyze their effect on the total social 

cost. 
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Hazug villamosenergia-termelők: a centralizált kifizetési 

mechanizmusok manipulálhatósága az 

áramkereskedelemben 

 

Csercsik Dávid 

 

Összefoglaló 

 

Az optimális teljesítményáramok (OTÁ) problémája azon kérdéssel foglalkozik, hogyan lehet 

egy villamosenergia-átviteli hálózatot a leggazdaságosabban működtetni. OTÁ problémák 

esetén a cél annak meghatározása, hogy a villamosenergia-termelés milyen értékeivel tudjuk 

kielégíteni a fogyasztók igényeit oly módon, hogy ne terheljük túl az átviteli hálózatot, 

valamint minimalizáljuk a termelési költségeket és az átviteli veszteségeket. A tanulmányban 

a hálózatot egyszerű DC load flow modellel írjuk le, valamint minden termelő esetében 

lineárisan csökkenő marginális termelési költséget tételezünk fel. Egy olyan piacot veszünk 

figyelembe, ahol az OTÁ meghatározása központi hatóság feladata, ami ismeri a hálózati és 

termelési paramétereket. Továbbá feltételezzük, hogy a villamosenergia-termelők kifizetése is 

központi mechanizmus alapján történik. Azt a lehetőséget vizsgáljuk, hogy mi történik, ha a 

termelők nem valós adatokat adnak meg, így manipulálva az OPF-számítást és potenciálisan 

növelve profitjukat. Két különböző központi kifizetési mechanizmust vizsgálunk és 

összehasonlítjuk manipulálhatóságukat. 

 

 

Tárgyszavak: hálózatok, villamosenergia-átvitel, manipulálhatóság, optimális 

teljesítményáramok 

 

JEL kód: C71, L14, L94 
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Abstract

Optimal power flow (OPF) problems are focussing on the question how a power

transmission network can be operated in the most economic way. The general aim in

such scenarios is to optimize generator scheduling in order to meet consumption re-

quirements, transmission constraints and to minimize the overall generation cost and

transmission losses. We use a simple lossless DC load flow model for the description

of the transmission network, and assume linearly decreasing marginal cost of gener-

ators with different parameters for each generator. We consider a scenario in which

the generation values regarding the OPF are calculated by a central authority who

is aware of the network parameters and production characteristics. Furthermore, we

assume that a central mechanism is applied for the determination of generator payoffs

in order to cover their generation costs and assign them with some profit. We analyze

the situation when generators may provide false information about their production

parameters and thus manipulate the OPF computation in order to potentially in-

crease their resulting profit. We consider two central payoff mechanisms and compare

their vulnerability for such manipulations and analyze their effect on the total social

cost.
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JEL-codes: C71, L14, L94

1 Introduction

Because of its extreme importance, power system economics (Kirschen and Strbac, 2004)

has been an intensively researched interdisciplinary area. The trends of electricity market

liberalization, together with occasionally rapidly extending consumption in long term and

consumption peaks in short term, put increasing load on system operators and authorities

responsible for network operation and expansion.

If one wishes to analyze the electrical energy market as interactions of market partic-

ipants, he has to take into account that the possible interactions are constrained by laws

of physics as well as by market regulations.

Optimal power flow (OPF) problems (Dommel and Tinney, 1968; Conejo and Aguado,

1998) dominantly aim to optimize the system operation costs, namely minimize instan-

taneous generating costs and/or transmission losses under various assumptions, however

the objective function may be based on voltage profile or voltage stability considerations

as well (Abido, 2002). The control variables of such problems in addition to generator

production rates may include the voltage angles of the buses (Conejo and Aguado, 1998),

transformation ratios, states of flexible ac transmission systems (FACTS) (Hingorani, 1993;

Hingorani, Gyugyi, and El-Hawary, 2000; Song and Johns, 1999) which affect the trans-

mission performance of power lines, and switching variables which alter the topology of

the transmission network (Fisher, O’Neill, and Ferris, 2008; Hedman, O’Neill, Fisher, and

Oren, 2008; O’Neill, Hedman, Krall, Papavasiliou, and Oren, 2010). These optimal trans-

mission switching models, which formulate the optimization as a mixed integer problem,

usually assume n − 1 contingency reliability (Hedman, O’Neill, Fisher, and Oren, 2009)

(in general, n is the number of system components), which means that the effects of single

line and generator failures on the network are included in the analysis. The latest models

of Hedman, Ferris, O’Neill, Fisher, and Oren (2010) even include generator startup and

shutdown costs as well.

For the optimization problems resulting from different OPF scenarios, numerous so-

lution approaches have been proposed including e.g. the Newton-approach (Sun, Ashley,
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Brewer, Hughes, and Tinney, 1984), particle swarm optimization (Abido, 2002), as well

as evolutionary and genetic algorithms (Yuryevich and Wong, 1999; Bakirtzis, Biskas,

Zoumas, and Petridis, 2002). For surveys see (Momoh, Adapa, and El-Hawary, 1999;

Momoh, El-Hawary, and Adapa, 1999; Huneault and Galiana, 1991).

Our aim in this paper however is not to provide novel or more efficient methods for OPF

calculation, but to analyze the economic aspects of a regulated electricity market model,

with a fixed network topology, where the OPF calculation is carried out by a central

authority, which is considered to be independent of the generators. We will assume that

generators are obligated to provide information about their own production characteristics

to this central authority (independent network operator or INO in the following), and

investigate how possibly provided unrealistic information affects the resulting profits under

various assumptions. A further aim is to determine the effect of cooperation, which is

interpreted in this case as coordinated provision of (potentially false) information for the

INO. We assume a simple lossless DC load flow model, and linearly decreasing marginal

generation costs.

2 Materials and Methods

First, let us review the DC load flow model used for the description of the power trans-

mission network.

The DC load flow model has been widely used among papers analyzing power system

economics (see e.g. Tseng, Oren, Cheng, Li, Svoboda, and Johnson (1999); Yao, Oren,

and Adler (2004); Sauma and Oren (2007)). For the sake of simplicity we will assume

that every node of the energy transmission network is assigned to a certain generator or

consumer. The most straightforward interpretation of the model is that we study the high

voltage networks, in which case consumers correspond to local energy providers who own

mid-voltage networks.

We assume that the power transmission system is described by a graph, the system

graph, in which n nodes (or buses) are connected by m edges, which naturally represent

the transmission lines. We assume ng generators, and nc = n− ng consumers.

The details of the DC load flow model are described in Appendix A. The notations

and the mathematical formalism are based on Oren, Spiller, Varaiya, and Wu (1995) and

Contreras (1997). One of the most important properties of the DC load flow model is that

3



given a power injection vector P , the network topology and line parameters, the flows (qij)

can be uniquely determined via linear equations. We assume that the first ng elements of P

correspond to generators for which the pi values are negative. Pg will denote the truncated

vector, which holds only the first ng elements of P . During the optimization process,

these elements of P will represent the decision variables, while the remaining elements

corresponding to the consumption values will be constant. Pc will denote the remaining

part of P corresponding to consumers.

In the following we itemize some additional assumptions regarding our model

• We neglect the demand elasticity of consumers.

• Each generator has a limited production capacity.

• The concept of plant utilization is important when analysing the costs of generating

electricity. It can be observed that a plant with low utilization inevitably has a high

unit cost of production because the same investment and fixed costs of operation

and maintenance are recovered over fewer units of production. As the most simple

approach, we assume that generation cost per unit is linear decreasing function of

generated quantity1: cj(pj) = aj −mjpj where aj [$/MWh] and mj > 0 [$/MWh2]

are the constants describing the production characteristics of generator j (which

depend on the applied technology), while pj [MWh] is the total power produced

by the generator j. The total generation cost of a generator can be formulated as:

Cj = cj(pj)pj . The vector C holds the generation costs.

• The income (Ij), and so the profit (γj), of a certain generator j depends on the actual

market regulation mechanism, in other words on the applied payoff mechanism (see

later).

2.1 Calculating the optimal power flow

Let us assume that the fixed consumption needs of nodes ng + 1, ..., ng + nc are denoted

by pni (i ∈ {1, .., nc}). In our case the optimal power flow is the solution of the following

1Although it is possible that near the production capacity limits the validity of the decreasing marginal

cost assumption is questionable, to keep the model as simple as possible, we restrict our analysis to the

case where the linearly decreasing marginal cost assumption is valid. The model can be easily extended

with more complex production characteristics.
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problem.

min
Pg

ng
∑

j=1

Cj(pj) (1)

subject to the constraints

|BDATB+P | < Q̄ (2)

−Ing
Pg ≤ P̄g (3)

n
∑

i=1

pi = 0 (4)

Inc
Pc = Pn (5)

where Cj(pj) = cj(pj)pj is the generation cost of generator j. Eq. 2 corresponds to

the prevention of line flow overloads, eq. 3 describes the limited generation capacity of

generators where the vector P̄g length ng holds the maximal generation values (Ing
is the

unitary matrix of size ng - remember that the P values for generators are negative), while

eqs. 4 and 5 refer to the power balance for the whole network and the fulfillment of

consumption needs respectively (the vector Pn of length nc is composed of the pni values).

We will denote the optimal power injection vector, the solution of 1 with P opt.

This is a smooth nonlinear optimization problem with equality and inequality type

constraints. The absolute value from the constraint 2 may be removed as described in

(Kaltenbach and Hajdu, 1971)2. In Appendix B several available optimization methods

have been compared for the OPF calculation. Based on the results, we will use the the

SCIP algorithm (Achterberg, 2009) for OPF calculation for the rest of the paper, as it

turned out to be the most efficient.

2.2 The example network

As it can be seen in Fig. 1, the generator capacities are P̄g = [4, 5, 4, 6]T while the con-

sumption demands are defined as Pn = [3 1 1]T . qst can be calculated as 1.3Yst. The

2This approach doubles the number of variables in the optimization problem (since it separates the

positive and negative part of the variables).
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Figure 1: Topology and parameters of the example network. The Yst values denote the

admittance values of the line connecting node s and t. The numbers next to the nodes

indicate the available generation amounts and required consumption quantities denoted by

arrows pointing from the number to the node and vice versa respectively.

a1 a2 a3 a4 m1 m2 m3 m4

0.65 0.63 0.68 0.7 0.1 0.07 0.0 0.04

Table 1: Production parameters of the example network. Dimensions: ai [$/MWh], mi

[$/MWh2].

above parameters and the network structure was determined in order to provide a computa-

tionally tractable example, where a significant number of consumer-generator matchings is

feasible. The multiplier 1.3 was determined in order to imply real transmission constraints

on the set of possible matchings under the assumed P̄g and Pc values.

The production parameters are summarized in Table 1.

The production curves are depicted in Fig. 2.

2.3 Payoff mechanisms

We assume that after each generator reports its production parameters, the INO determines

the OPF. Thereafter the payoff of generators is calculated based on their actual production

values corresponding to the OPF. The following payoff mechanisms are considered
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Figure 2: Linearly decreasing marginal cost production characteristics of the various gen-

erators.

1. Unitary price - In this case, independently of the production cost, generators are

rewarded based on the produced quantity. We assume that the unitary payoff (iu)

is always high enough to cover the production costs of generators. In this case the

income of generator j may be formalized as

Ij = iupj

2. Proportional profit - As an alternative we may assume a payoff mechanism which

distinguishes between generators using different technology, and compensates higher

production costs more. This mechanism may be regarded as the most simple one

which determines the payoff according to the possibly different production charac-

teristics. In this setup each generator receives an amount, which ensures a payoff

proportional to its total generation cost. We denote the profit ratio by rP . In this

case the income of generator j can be calculated as

Ij = (1 + rP )C
calc
j

where Ccalc
j is the cost of generation regarding generator j, calculated by the INO

from the reported production parameters.

In both cases the profit is calculated as the difference of the income and the real generation

cost γj = Ij − Cj. The vectors I and γ are composed of Ij and γj values.
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Let us note that the social cost (the amount that the INO pays to the generators) is

always the same in the first case but may depend on reported values in the second case.

More precisely, in the case of the proportional profit mechanism, both the increase and

decrease of the TSC (total social cost) is possible. See Example 1 later for details.

If the reference profit of the lying generator is zero (it does not generate any power), it

may report more effective production characteristics to modify the OPF to a state where

his generation value is positive, with a positive profit (which is in this case less then the

reference profit determined by the proportional profit principle).

2.4 The optimization problem of the lying generators

While the INO schedules the generators in order to reach the lowest overall production cost

taking into account the reported characteristics, generators may lie about their production

parameters to modify/maximize their payoff. As a simplest case we will assume that only

one generator (generator 1) is lying and take a close look to the implied optimization

problem.

Example 1

We compare 4 cases. Case 1 serves as reference.

1. In the reference case, when all generators report their real production parameters,

the power injection vector corresponding to the OPF, the calculated (Ccalc) and real

(C) generation costs are

P opt
=































−3.0006

0

−1.9994

0

3

1

1































Ccalc
=















1.05

0

1.0398

0















C =















1.05

0

1.0398

0















while, incomes and profits according to the unitary price mechanism (I1/γ2) and to
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the proportional profit mechanism (I2/γ2) are

I1 =















2.1004

0

1.3996

0















I2 =















1.7851

0

1.7676

0















γ1 =















1.0504

0

0.3598

0















γ2 =















0.7350

0

0.7278

0















2. If generator one reports the production parameters a1 = 0.65 m1 = 0.08877 instead

of his real values, the power injection vector corresponding to the OPF, the calculated

(Ccalc) and real (C) generation costs are

P opt
=































−3.0006

0

−1.9994

0

3

1

1































Ccalc
=















1.1511

0

1.0398

0















C =















1.05

0

1.0398

0















incomes and profits according to the unitary price mechanism (I1/γ2) and to the

proportional profit mechanism (I2/γ2) in thi case are

I1 =















2.1004

0

1.3996

0















I2 =















1.9569

0

1.7676

0















γ1 =















1.0504

0

0.3598

0















γ2 =















0.9069

0

0.7278

0















One would expect that if a "lying" generator reports higher generation costs, it will be

scheduled for a smaller power. However, as this case demonstrates, if the proportional

profit mechanism is applied, the P opt vector does not change, and so neither does I1

or γ1. On the other hand I2 and γ2 are increased. In other words using generator 1

for generation is still cheaper than changing to an other generating unit.

This case shows as well that in the case of the proportional profit mechanism, when

the reference profit of the lying generator is nonzero, it is possible that it may increase

its reported generation cost and thus increase the TSC (which may be calculated as

the sum of the elements of I2).
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3. Next we analyze what happens when generator 1 further decreases the reported value

of of m1 to m1 = 0.08876. In this case the power injection vector corresponding to

the OPF, the calculated (Ccalc) and real (C) generation costs are

P opt
=































0

−3.4885

−1.5115

0

3

1

1































Ccalc
=















0

1.3459

0.8450

0















C =















0

1.3459

0.8450

0















incomes and profits according to the unitary price mechanism (I1/γ2) and to the

proportional profit mechanism (I2/γ2) in thi case are

I1 =















0

2.4420

1.0580

0















I2 =















0

2.2880

1.4366

0















γ1 =















0

1.0961

0.2130

0















γ2 =















0

0.9421

0.5915

0















At this point, the calculated cost of the other power injection configuration (P opt),

where the system no longer uses generator 1 becomes lower than using generator 1,

and the operation abruptly changes to a different operating point. Generator 1 can

not lie arbitrary big to increase its profit.

4. Let us examine what happens when generator 2 reports a2 = 0.59 (while the real

value of the parameter is 0.63). In this case

P opt
=































0

−3.4885

−1.5115

0

3

1

1































Ccalc
=















0

1.2063

0.8450

0















C =















0

1.3459

0.8450

0














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while, incomes and profits according to the unitary price mechanism (I1/γ2) and to

the proportional profit mechanism (I2/γ2) are

I1 =















0

2.4420

1.0580

0















I2 =















0

2.0508

1.4366

0















γ1 =















0

1.0961

0.2130

0















γ2 =















0

0.7049

0.5915

0















This example demonstrates that, if assuming the proportional payoff mechanism,

generator 2 was able to change the operation point to a state where its generation is

greater than zero and thus increase its profit from zero to 0.7049, while the TSC has

been decreased from 3.5527 to 3.4874.

The above simple example shows that the objective function of the generators opti-

mization problem is non-continuous (the implied profit may change abruptly). To study

which nonlinear solver suits the best to this type of problem, a series of simulation studies

were performed.

2.5 Optimization methods for the lying generators

In this subsection we use the same randomization of the network and production charac-

teristics during the simulations like in Appendix A, and compare the efficiency of various

optimization algorithms regarding lying. We assume that only player one is lying. Further-

more, we assumed that the lying of the generators is credible only if the reported values

stay in ±20% interval of the real values.

The set of the compared algorithms is slightly different. The computations were carried

out in MATLAB. Regarding the SCIP algorithm used in the OPF calculation, SCIP only

supports a subset of MATLAB commands, and the objective function to be minimized

includes an OPF calculation (in other words an ’inner’ optimization process is required

to determine the value of the objective function), this method can not be used in this

case. The IPOPT and L-BFGS-B methods used for the comparison of solvers for the OPF

calculation are designed for continuous, differentiable objective functions, and since in this

case the objective function is discontinuous, they have to be discarded. The solver NLOPT

ran into numerical problems from time to time. The reason for this probably lies in the

non-continuous nature of the optimization problem.
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On the other hand three algorithms were added to the test set, which were unable to

handle the optimal flow problem because of the nature of constraints, but here they proved

to be useful.

• Particle swarm (PS) pattern search method (Vaz and Vicente, 2007).

• Simulated annealing (SA) (van Laarhoven and Aarts, 2008) (SA), as implemented in

the MATLAB function simulannealbnd

• Nomad (Le Digabel, 2011).

100 repeated runs were completed with each algorithm and each payoff mechanism.

Table 2 holds the accumulated surplus value regarding each algorithm compared to the

reference case (real parameters reported). Regarding the unitary price payoff mechanism

the unitary price was set to 0.7 to ensure positive profit for each generator. In the propor-

tional profit payoff mechanism, the value rP = 0.1 was used for profit ratio.

Payoff mech. FILTER NOMAD PSWARM GA SA

1 0 0.14 0.27 0.26 0.28

2 0.23 0.24 0.25 0.24 0.25

Table 2: The result of optimization regarding lying in the case of various optimization

methods and payoff mechanisms: Increase of the resulting profit due to lying. Player 1 is

lying. Averaged results of 100 simulations.

The comparison of the resulting profit makes sense regarding a given payoff mechanism

only, since the base profits are different when considering different payoff mechanisms.

In the case of unitary pricing (1), only the NOMAD, PSWARM, SA and GA algorithms

were able to improve the profit in 19, 39, 39 and 42 % of the cases respectively, while in

the case of the proportional profit payoff mechanism, the optimization methods brought

improvement compared to the reference non-lying case in 75, 77, 78, 75 and 79 % of

the cases respectively. In the case of unitary pricing, the FILTER algorithm was not

able to improve the results (lying based on this optimization method did not bring any

significant benefit to the lying generator). This example points toward the hypothesis that

the proportional profit mechanism is more easy to manipulate, and the simulated annealing

mechanism is the most efficient in both cases. Regarding both cases of payoff mechanism,

12



simulated annealing (SA) (van Laarhoven and Aarts, 2008) provided the best results for

the analyzed optimization problem, and so in the rest of the paper we will use this method

for the determination of the reported production values of generators when lying.

It is straightforward to do the analysis in the cases when not player one, but one of

the other players is lying to see how the results depend on production characteristics and

position in the network. If only player 2 is lying (determining the reported values with SA),

the lying helps him to improve his profit in 46 and 79 % considering unitary pricing and

proportional profit payoff mechanisms respectively. The values are 46 and 79 % respectively

considering player 3, and 42 and 62 in the case of player 4.

Regarding the effect of the proportional profit payoff mechanism on the TSC, the sign of

the change in the TSC due to lying strongly depends on the real production characteristics

of the player. If a generator has an efficient production capability, it will be chosen with

greater chance for production, even if the real values are reported. In this case, as discussed

in 2.3 the TSC will increase. Simulation results show that in the case of player one lying,

the TSC increased in 60% of the cases while decreased in 24% (in the rest of the cases it did

not practically change). In the case of player 2 these values are 46% and 26%. Regarding

player 3 we get 58% and 32%, while in the case of player 4 the vales are 42% and 22%

respectively. The results are in good agreement of what we expect from the production

characteristics and the hypothesis detailed in section 2.3. As Fig. 2 shows, player 1 has

the most efficient production characteristics. This implies that he is often included in the

basic (not lying) OPF setup. In these cases his base production is greater than zero, and

with false reports he may keep his production demand, while increasing his profit and the

TSC as well. In contrast, in the player 4 with the less efficient production curve has this

opportunity in much smaller percent of the cases.

3 Conclusions

Based on a conventional DC load flow model we analyzed a simple model of a centrally

regulated electrical power market. In the proposed model the INO calculates the optimal

power flow and determines the generation values according to the production characteristics

reported by the generators. The generators are paid according to two different payoff

mechanisms - the unitary price and the proportional profit mechanism. We assumed that

generators may report false values to manipulate the INOs decision and thus increase their
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profit. While the profit mechanism can be considered more fair, since it takes into account

the different production characteristics while determining the payoffs, simulations shown

that this mechanism is more easy to manipulate by the proposed lying actions. Regarding

the analyzed example, the proportional profit mechanism indicated a significant potential

to increase the TSC when a lying generator is present. In addition the efficiency of different

numerical optimization algorithms were compared both for the OPF and the lying problem.
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Appendix A: DC Load flow model

In the proposed model generators can be characterized by the quantity of actual and

maximal generated (or supplied) power, while consumers are described by their power

consumption (constant for each consumer node). We assume that a transmission line is

characterized by its admittance value, denoted by Yij (which will be equal to susceptance

in this case, for we neglect the real part of impedance values), and maximum transmission

capacity (or branch power flow limit) q̄ij .

According to our modelling considerations, we describe the voltage at node i with

sinusoidal waveform:

vi(t) = Vi sin(ωt+ θi) (6)

where Vi stands for the magnitude, ω = 2πf denotes the frequency in rad/s and θi is the

phase angle.

If we assume that the nodes i and j are connected by a transmission line with admittance

Yij = Yji, the (real) power flow from i to j can be described with:

qij = ViVjYij sin(θi − θj) (7)

By definition qij > 0 if the power flows from i to j. This implies qij = −qji for flows of

opposite direction. We can formalize the energy conservation for each node as follows. The
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net power pi injected into (or drawn from) the network at bus i addition to the total inflow

is equal to the total outflow:

pi =
n

∑

j=1

qij (8)

Without the loss of generality, let us assume Vi ≡ 1. In this case

pi =

n
∑

j=1

Yij sin(θi − θj) (9)

which means n− 1 independent equations (as p1 + ...+ pn = 0). Let us choose θn
.
= 0. In

this case the individual line flows can be expressed as:

qij = Yij sin(θi − θj) (10)

Assuming that (θi− θj) is small, sin(x) may be approximated with x. This leads to the

so called "DC load flow model", which exhibits the following uniqueness property: Given

power injections and power consumptions at each node, the phase angles θi are determined

by solving a system of linear equations. From the phase angle differences, the line flows

can be uniquely determined.

We can summarize the equations in the following matrix formalism (Contreras, 1997):

The relation between the total inlet/outlet power and power flows can be described by

AQ = P (11)

where A ∈ R
n×m is the Node-branch incidence matrix of the network, Q ∈ R

m denotes the

power flow vector, and P ∈ R
n is the power injection vector (composed of [p1, p2, ..., pn]).

If we substitute the individual power flows in Equation 11 with the linearized expressions

from Equation 7, we can write

B(Y )Θ = P (12)

where B(Y ) ∈ R
n×n denotes the susceptance matrix whose elements are Bkl = −Ykl for

the off-diagonal terms and

Bkk =
∑

k 6=l

Bkl

(the column sum of off-diagonals) for diagonal elements. Θ ∈ R
n is vector of nodal voltage

angles.
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The constraint describing the maximum line power flows can be derived as

|Q| = |BDATΘ| < Q̄ (13)

where |Q̄| is branch power flow limit vector (composed of the elements q̄ij), and BD is a

diagonal matrix with BD
kk = Yij.

As we know from Equation 12, BΘ = P . The matrix B is singular due to the column

conservation property, but since in the calculation of flows only the differences of the

elements of the vector Θ are appearing (see Equation 7), we may express it as

Θ = B+P (14)

where B+ is the Moore-Penrose pseudoinverse of B. Constraint 13 becomes

|BDATΘ| = |BDATB+P | < Q̄ (15)

Appendix B: Optimization methods for the OPF

As a preliminary study we compared the currently freely available optimization tools in

MATLAB in the context of solving 1-5. The basic model was the topology of Network 1

as depicted in Fig 1, however the admittance values, and production characteristics were

randomized around the nominal values described in section 2.2 as follows. Ỹij = Yij +∆Y

where ∆Y ∈ (−0.5, 0.5) , ãj = aj + ∆a where ∆a ∈ (−0.25, 0.25), and m̃j = mj + ∆m

where ∆m ∈ (−0.03, 0.03) (each ∆ value from uniform distribution).

The following algorithms were compared:

• Interior point optimizer (IPOPT), see (Wächter and Biegler, 2006)

• Filter–SQP Algorithm (Fletcher, Leyffer, and Toint, 2002)

• L-BFGS-B or Algorithm 778 (Zhu, Byrd, Lu, and Nocedal, 1997)

• NLOPT (Johnson, 2010)

• SCIP (Achterberg, 2009)

• The standard genetic algorithm (GA) of MATLAB (Goldberg and Holland, 1988)
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1000 repeated runs were completed with the randomized parameters for each algorithm

A. The evaluation was carried out as follows. For each run, the reference value of the

objective function F (the value of 1) at run i denoted by Fref(i) was defined as the lowest

value found by the various algorithms in the current run Fref(i) = minA FA(i)). The error

of the algorithm A at run i (ΥA(i)) then is defined as

ΥA(i) = FA(i)− Fref(i)

The resulting error is the sum over the repetitive runs ΥA =
∑

i ΥA(i). The resulting

values are as follows.

Payoff mech. IPOPT FILTER L-BFGS-B NLOPT SCIP GA

Υ 74.6 122.3 74.6 1044.1 2 882

Table 3: Comparison of various optimization methods regarding optimal power flow com-

putation .

As it can be seen from the results summarized in 3, the SCIP algorithm finds the best

value of the objective function in almost every case, and it is undoubtedly the most well

suited for this optimization problem.
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