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1 Introduction

Permutation games were introduced by Tijs, Parthasarathy, Potters and Rajendra
Prasad (1984) in connection with certain sequencing and re-assignment problems.
They proved that permutation games are totally balanced. Another proof of this
was given by Curiel and Tijs (1986), who established relations between permuta-
tion games and assignment games, a class of games introduced by Shapley and
Shubik (1972) in connection with certain two-sided matching situations. This con-
nection was further explored by Quint (1996). He showed that the entire core of a
permutation game can be obtained from the core of a related assignment game.

In this paper we focus on the kernel of permutation games. The kernel, in-
troduced by Davis and Maschler (1965), is a nonempty set of imputations for all
games with a nonempty imputation set. Both the kernel and the core are subsets of
the bargaining set, a non-empty set-valued solution that was first investigated by
Davis and Maschler (1967), but in general there is no inclusion relation between the
kernel and the core. It was shown by Solymosi, Raghavan and Tijs (2003) that in
permutation games the bargaining set coincides with the core, so we immediately
get that in permutation games the kernel is a subset of the core.

In this paper we focus on the question whether in permutation games we can
identify a subset of the non-empty core which contains the kernel. The first natu-
ral candidate is the least core, a non-empty set-valued solution that was formally
introduced by Maschler, Peleg and Shapley (1979), since for balanced games it is
a subset of the core. Our main result is that in permutation games the kernel is
contained even in the least core.

The nucleolus-allocation, the single imputation in the nucleolus introduced by
Schmeidler (1969), is always an element of both the kernel and the least core. It is
the unique outcome of the so-called lexicographic center procedure, an optimization
process first formalized by Maschler, Peleg and Shapley (1979), which sequentially
reduces the set of allowable payoffs until it shrinks to a singleton. For balanced
games, the core can be chosen as the initial set in this process, the first iteration
reduces the allowable set to the least core, and finally, the lastly reduced allowable
set contains only the nucleolus-allocation. Our main result can be rephrased as
follows: in permutation games, the kernel is a subset of the allowable set determined
by the first iteration of the lexicographic center procedure. By means of an example
we demonstrate that in general this result cannot be sharpened. We give a 5-
player permutation game with a (non-convex) kernel that is not contained in the
(convex) allowable set determined by the second iteration of the lexicographic center
procedure, while the nucleolus-allocation is obtained only after the third iteration.

It was shown by Peleg (1966) that if the number of players in any game (with
a non-empty imputations set) is at most four, the kernel is a convex set, in fact,
a line segment or a singleton. In our 5-player permutation game the kernel is the
union of two connected line segments with different direction vectors, so it is also
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an example (of the smallest possible size) for a game with a non-convex kernel. We
remark that a (5 + 5)-player assignment game with a non-convex kernel was given
by Granot and Granot (1992). The challenging task of computing the (pre)kernel
in a general TU game is the topic of the recent book by Meinhardt (2014).

The organization of the paper is as follows. We recall the necessary definitions
and preliminaries for general games in the next section. In section 3, we summa-
rize the relevant known results for permutation games, highlight the subclass of
cyclic permutation games and collect their known structural features. We show our
main result and demonstrate that, in a certain sense, it can not be strengthened in
section 4.

2 Definitions and general preliminaries

A transferable utility cooperative game on the nonempty finite set N of players is
defined by a coalitional function V : 2N −→ R that satisfies V (∅) = 0. The function
V specifies the worth of every coalition S ⊆ N . We shall denote by

P := {S ⊆ N : S 6= ∅, N}

the collection of proper coalitions, and for distinct players i and j, by

Pij := {S ⊆ N : i ∈ S, j 6∈ S}

the collection of (proper) coalitions containing i but not j.
A subcollection S of P is called balanced, if there are positive weights γS, S ∈ S,

such that
∑

S∈S,S3i γS = 1 for all i ∈ N . A balanced collection is said to be minimal,
if it contains no proper balanced subcollection. It is well known (cf. Shapley, 1967)
that a balanced collection is minimal if and only if the system of balancing weights
is unique.

The game (N, V ) is called superadditive, if S ∩ T = ∅ implies V (S ∪ T ) ≥
V (S)+V (T ) for all S, T ⊆ N ; balanced, if V (N) ≥

∑
S∈S γSV (S) for every minimal

balanced collection S with its unique system of weights γS, S ∈ S; and totally
balanced, if every subgame (i.e., the game obtained by restricting the player set to a
coalition and the coalitional function to the power set of that coalition) is balanced.
Note that totally balanced games are superadditive.

Given a game (N, V ), a payoff allocation x ∈ RN is called efficient, if x(N) =
V (N); individually rational, if xi = x({i}) ≥ V ({i}) for all i ∈ N ; coalitionally
rational, if x(S) ≥ V (S) for all S ⊆ N ; where, by the standard notation, x(S) =∑

i∈S xi if S 6= ∅, and x(∅) = 0. We denote by X ∗(N, V ) the preimputation set (i.e.,
the set of efficient payoff allocations), by X (N, V ) the imputation set (i.e., the set of
efficient and individually rational payoffs), and by C(N, V ) the core (i.e., the set of
efficient and coalitionally rational payoffs) of the game (N, V ). It is well known (cf.
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Shapley, 1967) that for transferable utility games balancedness and nonemptiness
of the core are equivalent properties.

Given a game (N, V ), the excess e(S, x) := V (S)− x(S) is the usual measure of
gain (or loss if negative) to coalition S ⊆ N if its members depart from allocation
x ∈ RN in order to form their own coalition. Note that e(∅, x) = 0 for all x ∈ RN ,
and

C(N, V ) = {x ∈ RN : e(N, x) = 0, e(S, x) ≤ 0 ∀S ∈ P},

i.e., the core is the set of efficient allocations which yield nonpositive excess for all
coalitions.

The kernel, introduced by Davis and Maschler (1965), is a nonempty set of im-
putations for all games with a nonempty imputation set. It was proved by Maschler,
Peleg and Shapley (1972) that for a large class of games (which includes superad-
ditive games) the following alternative definition can be used. The kernel K(N, V )
of the game (N, V ) is the set of all imputations x satisfying

sij(x) = sji(x) for all i, j ∈ N, i 6= j, (1)

where for distinct players i and j,

sij(x) := max
S∈Pij

e(S, x)

measures — in terms of excesses — the most i can hope to gain (the least to lose)
without the consent of j, if i refuses allocation x. In this sense, the kernel (of
superadditive games) consists of imputations which are in bilateral equilibrium for
all pairs of players.

The nucleolus, an excess-based solution that is closely related to the kernel,
was introduced by Schmeidler (1969), who proved that for games with a nonempty
imputation set the nucleolus is always a nonempty subset of the kernel that consists
of a single element. The following alternative definition of the nucleolus given by
Maschler, Peleg and Shapley (1979) will serve us better here. Since we only deal
with balanced games in this paper and for balanced games the nucleolus is in the
core, we initiate the lexicographic center procedure with the core (instead of the
imputation set).

Let X0 := C(N, V ) and Σ0 := P .
For r = 1, . . . , % define recursively

εr := minx∈Xr−1 maxS∈Σr−1 e(S, x),
Xr:= {x ∈ Xr−1 : maxS∈Σr−1 e(S, x) = εr},
Σr := {S ∈ Σr−1 : minx∈Xr e(S, x) = maxx∈Xr e(S, x)},
Σr := Σr−1 \ Σr,

where % is the first value of r for which Σr = ∅.

(2)
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The final set X% is the nucleolus N (N, V ) of the balanced game (N, V ). We refer
to the unique vector in X% as the nucleolus-allocation.

The least core LC(N, V ) of a game (N, V ) was first formally treated by Maschler,
Peleg and Shapley (1979) as the set of all efficient allocations that minimize the
maximum excess of proper coalitions, i.e.,

LC(N, V ) := arg min
x∈X ∗(N,V )

max
S∈P

e(S, x).

Obviously, for balanced games, the least core is exactly the set of optimal imputa-
tions in the first iteration of procedure (2), i.e., LC = X1 ⊆ C. Moreover, LC = C
if and only if ε1 = 0. The following well-known characterization of least-core allo-
cations will be used (cf. e.g. Peleg and Sudhölter, 2003, p.183):

Proposition 1 An efficient payoff allocation belongs to the least core if and only if
the collection of proper coalitions having maximal excess at that allocation contains
a (minimal) balanced collection.

Another combinatorial property of the collection of proper coalitions having
maximum excess at an imputation appears in connection with the kernel (of super-
additive games). We call a collection of proper coalitions E ⊆ P separating, if for
any two distinct players i, j ∈ N , whenever there is a coalition S ∈ E with i ∈ S 63 j
then there is a coalition T ∈ E with j ∈ T 63 i. By recalling the surplus-equalizing
conditions (1) which define kernel elements, the following necessary condition is
easily derived.

Proposition 2 If an imputation belongs to the kernel then the collection of proper
coalitions having maximal excess at that imputation is a separating collection.

We note by passing that for a large class of games (which includes superaddi-
tive games), if the number of players is at most four then the kernel is contained
in the least core. Indeed, in light of Propositions 1 and 2, it suffices to observe
(cf. Solymosi, 2002, section 4) that for a player set N with |N | ≤ 4, any separat-
ing collection contains a (minimal) balanced collection. This is no longer true if
|N | ≥ 5 (for |N | = 5 take, for example, the collection {134, 135, 145, 234, 235, 245}),
explaining why it is possible to construct (even totally) balanced games on a player
set N with |N | ≥ 5 having kernel imputations outside the core. We must point out
that these results were already (although implicitly) obtained by Peleg (1966), who
proved that in 4-player games the kernel is a line segment (which may shrink into a
single point), and that it occupies a central position in the core, whenever the core
is not empty. It is easily checked that the line segment in Peleg’s proof is precisely
(what is nowadays called) the least core (and the single point the line segment may
shrink into is the nucleolus). Peleg (1966) also presented a 5-player balanced game
whose kernel is a line segment but has points outside the core.

Our aim in this paper is to show that on an interesting subclass of totally
balanced games, the kernel is a subset of the least core, independently of the number
of players.
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3 Permutation games

Given two finite sets S and T , we call µ ⊆ S × T an (S, T )-assignment, if it is a
bijection from some S ′ ⊆ S to some T ′ ⊆ T such that |S ′| = |T ′| = min(|S|, |T |).
Trivially, µ = ∅ if S = ∅ or T = ∅. We shall write (i, j) ∈ µ as well as µ(i) = j.
We denote by Π(S,T ) the set of all (S, T )-assignments. Obviously, Π(S,T ) = {∅} if
S = ∅ or T = ∅. An (S, S)-assignment is called an S-permutation. We denote by
ΠS the set of all S-permutations. We call an S-permutation σ cyclic, if for any
proper subset S ′ of S, the restriction of σ to S ′ is not an S ′-permutation. A cycle
of an S-permutation σ is the restriction of σ to a subset S ′ of S, if the restriction
is a cyclic S ′-permutation. Clearly, every permutation is the union of its cycles.

A game (N, V ) is called a permutation game if there exists a square matrix
A = [aij]i∈N,j∈N such that

V (S) = max
σ∈ΠS

∑
i∈S

aiσ(i) ∀S ⊆ N. (3)

Note that ΠS is nonempty and finite for all S ⊆ N , so V is well defined. Moreover,
V (∅) = 0. Naturally, many different matrices induce the same game. Given a fixed
matrix A, we denote by Π∗S the set of optimal solutions to (3). An element of Π∗S,
typically denoted by σS, will be called a maximal S-permutation in the matrix A.
Note that permutation games are superadditive.

The (total) balancedness of permutation games was first proved by Tijs et al.
(1984). We briefly summarize the alternative proof given by Curiel and Tijs (1986),
because it leads to a useful representation of core allocations. Let (N, V ) be the
permutation game induced by the matrix A, and let π be a fixed maximal N -
permutation, i.e., V (N) =

∑
i∈N aiπ(i). Without indicating the dependence on this

fixed π, we simply denote by H := N ×N \ π the set of off-π pairs of players.
It is well-known that π can be obtained by solving a linear programming prob-

lem. We denote the set of optimal dual solutions to this LP by

D =
{

(u, v) ∈ RN+N : dij(u, v) = 0 ∀ (i, j) ∈ π, dij(u, v) ≤ 0 ∀ (i, j) ∈ H
}
,

where dij(u, v) := aij−ui−vj denotes the slack of the (i, j) ∈ N×N dual constraint
at dual vector (u, v) ∈ RN ×RN . Let the mapping m : RN ×RN −→ RN be defined
by m(u, v) := u + v. Curiel and Tijs (1986) showed that m(D) ⊆ C, consequently
C is nonempty. The reverse inclusion m(D) ⊇ C was proved by Quint (1996). The
representation

C(N, V ) = m (D)

of the core will be fundamental for our investigation, since we can rephrase condi-
tions imposed on core allocations of the permutation game in terms of optimal dual
vectors related to the underlying matrix.

As a consequence of the balancedness of permutation games and two other known
results, we get the following inclusion statement.
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Proposition 3 In a permutation game, the kernel is a subset of the core.

Indeed, the inclusion immediately follows from two known results: first, the kernel
is always a subset of the bargaining set (Davis and Maschler, 1965); second, in
permutation games the bargaining set coincides with the core (Solymosi et al., 2003).

In this paper, our aim is to show the stronger statement that in permutation
games, the kernel is included even in the least core. Obviously, there is nothing
to prove, if the grand coalition is inessential in the game (i.e. its value is weakly
majorized by the value of one of its proper partitions), for in such cases the least
core coincides with the core. Assignment games are prime examples for permuta-
tion games where the grand coalition is inessential. We remark that for assignment
games the inclusion of the kernel in the (least) core follows from the work of Gra-
not (1994) and Granot (2010), whereas Driessen (1998) proves the inclusion directly.

In the rest of this section we consider an important subclass of permutation
games, called cyclic permutation games. It contains all permutation games in
which the least core is a proper subset of the core. In particular, it contains permuta-
tion games in which the grand coalition is essential (i.e., V (N) > V (N1)+. . .+V (Nk)
for every proper partition N = N1 ∪ . . . ∪Nk, k ≥ 2, of coalition N). On the other
hand, assignment games are also cyclic permutation games, although in them most
of the multi-player coalitions (including the grand coalition) are inessential. This
contrast implies that the structural features of cyclic permutation games are the
key factors for our main result and not the essentiality of the grand coalition or the
full dimensionality of the core.

We call a permutation game (N, V ) cyclic, if it is induced by a cyclic matrix
A, i.e. if there exists a cyclic N -permutation which is of maximum value in A. In
order to simplify the notation, from now on we shall assume that N = {1, . . . , n},
and the cyclic N -permutation

π(i) :=

{
i+ 1 if i 6= n

1 if i = n

is of maximum value in the underlying matrix A, i.e., V (N) =
∑

i∈N aiπ(i).
Given the fixed cyclic permutation π, for i, j ∈ N we define the interval coalition

from i to j as

[i, j] :=

{
{i, π(i), . . . , πk(i) = j} if i 6= j and 1 ≤ k ≤ n− 1
{i} if i = j.

For example, [1, 2] = {1, 2} because π(1) = 2, but [2, 1] = N because π(2) =
3, . . . , πn−1(2) = 1. It is clear that any coalition has a unique interval-partition
consisting of its interval-components (i.e. the maximal-for-inclusion subcoalitions
which are intervals).

The pair (i, j) of players can be augmented with pairs in π to form a cyclic
permutation for the interval coalition [j, i]. Indeed, the mapping

σij(i) := j, and σij(h) := π(h) ∀h ∈ [j, i] \ {i}
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is a cyclic [j, i]-permutation. Observe that (i, j) is an off-π pair if and only if the
associated interval [j, i] is a proper coalition. Let

H = {[j, i] : (i, j) ∈ H}

denote the set of proper intervals. Since for [j, i] ∈ H the associated σij may not
be of maximum value, we clearly have

e([j, i], u+ v) ≥
∑

(p,q)∈σij

dpq(u, v) = dij(u, v) ∀ (u, v) ∈ D, (4)

so at any core allocation x = u + v ∈ C the excess of an interval coalition is
not less than the associated dual slack at any corresponding optimal dual vector
(u, v) ∈ m−1(x) ⊆ D. Let

H∗ = {[j, i] ∈ H : σij ∈ Π∗[j,i]}.

denote the set of proper intervals for which the associated permutation is of maximal
value, hence the weak inequality in (4) holds with equality. Notice that [i, i] ∈ H∗
for all i ∈ N , i.e. all single-player coalitions belong to this subclass of intervals.

In the following lemma we summarize the key structural feaures of cyclic permu-
tation games. The proofs and more details can be found in (Solymosi et al., 2005).
We say that a collection T ⊆ H reproduces S ∈ P (modulo N) if every player in S
is contained in exactly one more interval from T than any player not in S.

Lemma 1 (Solymosi, Raghavan, Tijs, 2005) In a cyclic permutation game, for
any S ∈ P there is a collection S ⊆ H∗ which reproduces S (modulo N), and a con-
stant tS ≥ 0 such that

e(S, x) =
∑
T∈S

e(T, x)− tS ∀x ∈ C. (5)

Consequently,

max
S∈P

e(S, u+ v) = max
T∈H∗

e(T, u+ v) = max
(p,q)∈H

dpq(u, v) ∀ (u, v) ∈ D. (6)

In light of Proposition 3, Lemma 1 implies that during the determination of core
allocations based on maximum excesses we can ignore coalitions which are not
intervals, because at core allocations the excess of any proper coalition is majorized
by the excess of at least one interval coalition from the collectionH∗ (in fact, it is less
than or equal to the excess of all the interval coalitions in the H∗-decomposition
of the coalition). Notice that this is a significant simplification possibility, since
there are (in the number of players) exponential many proper coalitions, but only
quadratic many of them are intervals.
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. a12 . . . . .

. . . . a25 . .

. . . . . . .

. . . . . a46 .

. . . a54 . . .

a61 . . . . . .

. . . . . . .

(1, 2) ↔ [2,1]= 1 2 3 4 5 6 7

(2, 5) ↔ [5,2]= 1 2 . . 5 6 7

. . . . . . .

(4, 6) ↔ [6,4]= 1 2 3 4 . 6 7

(5, 4) ↔ [4,5]= . . . 4 5 . .

(6, 1) ↔ [1,6]= 1 2 3 4 5 6 .

. . . . . . .

Figure 1: Any permutation induces a reproducing family of intervals

As an illustrative example, consider the cyclic matrix in Figure 1 and the induced
cyclic permutation game on player setN = {1, . . . , 7}. The maximalN -permutation
π is indicated by the framed squares. Coalition S = {1, 2, 4, 5, 6} is not an interval
(its interval-components are [1, 2] and [4, 6]), the corresponding principal submatrix
is highlighted in light gray. Take the (cyclic) S-permutation σ = {(1, 2), (2, 5),
(5, 4), (4, 6), (6, 1)}. The collection of the related intervals (listed in the reverse
order) Sσ = {[1, 6], [6, 4], [4, 5], [5, 2], [2, 1]} reproduces S (modulo N) since each
player in S appears in exactly four, while each player in N \S in only three of these
intervals. Both numbers decrease by one if we omit [2, 1] = N related to the only in-
π pair (1, 2) ∈ σ. Suppose the proper intervals [1, 6], [6, 4], [4, 5] ∈ Sσ belong to H∗,
but for the proper interval [5, 2] ∈ Sσ the value of permutation τ = {(1, 2), (2, 6),
(6, 1), (5, 7), (7, 5)} is t(2,5) ≥ 0 higher than the value of its associated permutation
σ(2,5) = {(2, 5), (5, 6), (6, 7), (7, 1), (1, 2)}. The collection of intervals related to
τ (listed in the reverse order) Tτ = {[5, 7], [7, 5], [1, 6], [6, 2], [2, 1]} contains each
player in [5, 2] four times, but each player in N \ [5, 2] = [3, 4] only three times.
Again, both numbers decrease by one if we omit [2, 1] = N related to the in-π
pair (1, 2) ∈ τ . Now, if in Sσ we replace [5, 2] with its reproducing family Tτ and
keep both copies of [1, 6] and [2, 1] = N related to the common elements (6, 1) and
(1, 2) ∈ σ ∩ τ , respectively, then we get a collection S ′ = Sσ ∪ Tτ \ {[5, 2]} in which
each player in S is listed exactly seven times, while each player in N \ S only six
times. Both numbers decrease by two if we omit the two copies of [2, 1] = N related
to the common in-π pair (1, 2). Thus, S = S ′∩H also reproduces S (modulo N). In
case the above σ is a maximal S-permutation and all (proper) intervals in S belong
to H∗, we have e(S, x) =

∑
T∈S e(T, x)− t(2,5) for any x ∈ C. It follows that for any

(u, v) ∈ m−1(x) ⊆ D we have e(S, x) ≤ d(p,q)(u, v) for all (p, q) ∈ (σ ∪ τ) ∩H.
Before we can prove our main result, we also need to recall another feature of

cyclic permutation games. In the above lemma we considered intervals related to
S-permutations, i.e. to (S, S)-assignments. Now we look at intervals arising from
(S, π(S))-assignments. A sequence of an even number of distinct pairs of players
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is said to be a loop, if it is of the form [(i1, j1), (i1, j2), (i2, j2), (i2, j3), . . ., (ik, jk),
(ik, jk+1)] such that k ≥ 2, jk+1 = j1 and π(ih) = jh+1 ∀h = 1, . . . , k. Since every
second pair must be in π, the sequence of the off-π pairs [(ih, jh) : h = 1, . . . , k]
completely determines the whole loop. (Notice that this sequence defines a bijection
from I = {i1, . . . , ik} to π(I) = {j1, . . . , jk} disjoint from π.) In other words, a set
of entries in the underlying matrix forms a loop if and only if each row and each
column contains exactly zero or two entries from this set, and in the latter case one
entry is from π.

We call a minimal balanced collection homogeneous if the (unique) balancing
weights are all equal.

Lemma 2 (Solymosi, Raghavan, Tijs, 2005) In a cyclic permutation game, if
the sequence [(ih, jh) : h = 1, . . . , k] of off-π pairs generates a loop, the collection
{[jh, ih] : h = 1, . . . , k} of intervals is a homogeneous minimal balanced collection.

For illustration, take the cyclic 7 × 7-matrix in Figure 2. Let [(2, 1), (6, 3),

. . . . . . .

a21 . a23 . . . .

. . . a34 . . a37

. . . . . . .

. . . . . . .

. . a63 . . . a67

a71 . . a74 . . .

. . . . . . .

(2, 1) ↔ [1,2]= 1 2 . . . . .

(3, 4) ↔ [4,3]= 1 2 3 . . . 7

. . . . . . .

. . . . . . .

(6, 3) ↔ [3,6]= . . 3 4 5 6 .

(7, 4) ↔ [4,7]= . . . 4 5 6 7

Figure 2: A loop induces a minimal balanced family of intervals

(3, 7), (7, 4)] be a sequence of off-π pairs that determines the loop [(2, 1), (2, 3),
(6, 3), (6, 7), (3, 7), (3, 4), (7, 4), (7, 1)]. Then the collection of the corresponding
proper intervals {[1, 2], [3, 6], [7, 3], [4, 7]} covers every player exactly twice, so it
can be balanced with equal 1/2 weights.

4 The main result

As stated in Proposition 3, for all permutation games the kernel K is contained in
the core C. In this section we show that for all permutation games the kernel is
contained even in the least core LC (⊆ C). Of course, this claim needs explanation
only when LC 6= C, i.e., when ε1 < 0 in the lexicographic center procedure (2). This
cannot happen if the game is not cyclic (i.e., no cyclic N -permutation is maximal),
because then the cycles of a maximal N -permutation induce a proper partition

10



N = N1∪ . . .∪Nk, k ≥ 2, of the player set such that V (N) = V (N1) + . . .+V (Nk).
Therefore, we restrict our discussion to cyclic permutation games. Notice that even
in the cyclic case, ε1 < 0 if and only if the maximal N -permutation is unique.

For distinct players i and j, we introduce the set of (off-π) pairs

Hij := [i, π−1(j)]× [π(j), i],

and the collection

Hij := H ∩ Pij

of interval coalitions which contain i but not j. Clearly, (p, q) ∈ Hij if and only if
[q, p] ∈ Hij. Figure 3 highlights the submatrices of off-π pairs in a cyclic (5 × 5)-
matrix that induce the intervals which separate 1 from 4 (on the left) and those
which separate 4 from 1 (on the right).

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

H14 = [1, 3]× [5, 1]

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

H41 = [4, 5]× [2, 4]

Figure 3: Pairs induce intervals separating 1 and 4

We know from Lemma 1 that when in the core only maximum excess matters
we can ignore coalitions which are not intervals. Next we show that the same is
true for maximum excess proper coalitions which separate one player from another.

Lemma 3 In a cyclic permutation game, for all i 6= j and (u, v) ∈ D,

sij(u+ v) = max
T∈Hij

e(T, u+ v) = max
(p,q)∈Hij

dpq(u, v). (7)

In particular, siπ(i)(u + v) equals the maximum of the off-π entries in row i of the
matrix [dpq(u, v)] of dual slacks at (u, v) ∈ D; and sπ(i)i(u+ v) equals the maximum
of the off-π entries in column π(i) of that matrix.

Proof Let i 6= j and (u, v) ∈ D.
Take an S ∈ Pij such that sij(u+v) = e(S, u+v), and a maximal S-permutation

σS ∈ Π∗S. It follows from

e(S, u+ v) =
∑
p∈S

dp,σS(p)(u, v) =
∑

(p,q)∈σS\π

dpq(u, v)

11



that e(S, u + v) ≤ dpq(u, v) ≤ 0 for all (p, q) ∈ σS \ π at the dual optimal vector
(u, v) ∈ D. Since S contains i but not j, Lemma 1 implies that at least one of the
proper intervals in the reproducing family [q, p], (p, q) ∈ σS \ π, belongs to Hij, so
at least one of the pairs (p, q) ∈ σS \ π belongs to Hij. Thus, e(S, u+ v) ≤ dpq(u, v)
for some (p, q) ∈ Hij. Therefore,

sij(u+ v) = e(S, u+ v) ≤ max
(p,q)∈Hij

dpq(u, v) ≤ max
T∈Hij

e(T, u+ v) ≤ sij(u+ v),

where the second inequality comes from (4), and the third from Hij ⊆ Pij.
The claims for the special case j = π(i) in (7) follow immediately from Hiπ(i) =

[i, i]× [π2(i), i] and Hπ(i)i = [π(i), π−1(i)]× [π(i), π(i)], respectively. �

Now we are ready to prove our main result.

Theorem 1 If (N, V ) is a permutation game then K(N, V ) ⊆ LC(N, V ).

Proof As remarked earlier, it suffices to show the inclusion in the cyclic case.
Let the cyclic permutation game (N, V ) be induced by the cyclic matrix A.

Let us choose an x ∈ K arbitrarily. It follows from K ⊆ C = m(D) that for all
(u, v) ∈ m−1(x) we have (u, v) ∈ D. So, let us choose an (u, v) ∈ D satisfying
x = u+ v arbitrarily.

Given this fixed (u, v) ∈ m−1(x), we define d(u, v) := max(p,q)∈H dpq(u, v) and
M(u, v) := arg max(p,q)∈H dpq(u, v). If (i, j) ∈ M(u, v), we get from Lemma 3 that
siπ(i)(u + v) = d(u, v), since the maximum of the off-π entries in row i of the
matrix [dpq(u, v)] of dual slacks at (u, v) is d(u, v). Then, u + v ∈ K implies that
sπ(i)i(u + v) = d(u, v) is the maximum of the off-π entries also in column π(i). If
(i′, π(i)) ∈ M(u, v), then i′ 6= i and, as before, we get that d(u, v) is the maximum
of the off-π entries also in column π(i′) 6= π(i). Let (i′′, π(i′)) ∈ M(u, v). If i′′ = i
then the sequence [(i, π(i′)), (i′, π(i))] of off-π pairs generates a loop. (Note that
π(i′) might be distinct from the starting j.) If i′′ 6= i then we can iterate the above
argument and get a new row and the corresponding column, both distinct from the
previously taken rows and columns, respectively. Obviously, we eventually close a
loop by getting an already considered row (that need not be the starting one). We
conclude that M(u, v) contains a sequence of off-π pairs which generates a loop.
By Lemma 2 and equation (6), this means that the collection of maximal excess
coalitions at x = u+v contains a (minimal) balanced collection. It follows from the
characterization of least-core allocations stated in Proposition 1 that x ∈ LC. �

We illustrate the loop finding argument in the above proof with the help of
Figure 4. In the matrices we indicated only the relevant dual slacks: d is the
maximum slack of the off-π entries, and, of course, 0 is the constant slack for the
in-π entries. The matrix on the left shows a situation when the process starts
with (i, j) = (3, 2), continues with (i′, π(i)) = (4, 4), then with (i′′, π(i′)) = (1, 5),
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j

. π(i′′) . π(i) π(i′)

i′′ . 0 . . d

. . . . .

i = i′′′ . d . 0 .

i′ . . . d 0

. . . . .

j

. π(i) π(i′) . π(i′′)

i d . . . .

i′ = i′′′ . d 0 . d

. . . . .

i′′ . . d . 0

. . . . .

Figure 4: Both (left) or neither (right) starting row / column in loop

and terminates with (i′′′, π(i′′)) = (3, 2), the very entry we started with. In this
case, both the initial row and column are covered by the loop found (highlighted
in gray). In contrast, the matrix on the right shows a situation where neither the
initial row nor the initial column is covered by the loop found. There we start from
(i, j) = (1, 1), then find (i′, π(i)) = (2, 2), then continue in the column π(i′) = 3
with (i′′, π(i′)) = (4, 3), and stop with (i′′′, π(i′′)) = (2, 5) because we reached the
already covered row i′ = 2. The loop we found is generated only by the last two
off-π entries discovered during the process.

Note that during the loop finding process applied in the above proof only the
siπ(i)(.) = sπ(i)i(.), i ∈ N , kernel conditions were used. This prompts the question
whether the K ⊆ X1 inclusion can be strengthened (maybe to the set X2 or even
further in the lexicographic center procedure (2)) by taking into consideration the
surplus equalizing conditions also for the pairs not in π. In the rest of this section
we demonstrate that the answer is no. In Example 1 below, we present a 5-player
(cyclic) permutation game where X1 ⊃ K ⊃ X2 ⊃ N (all inclusions are strict),
implying that Theorem 1 can not be sharpened in sense of the lexicographic center
procedure. The kernel is not a convex set in this 5-player game, so we also give
a minimum size example for a game with a non-convex kernel, since the kernel is
known to be convex for any general game with at most four players (and a non-
empty imputation set) (Peleg, 1966, Lemma 3.1).

Example 1 The 5× 5 cyclic matrix

A =


1 7 0 6 0

1 0 2 0 1

2 6 0 7 0

0 0 1 0 2

5 3 2 4 0


13



induces a 5-player cyclic permutation game for which C = X0 ⊃ LC = X1 ⊃ K ⊃
X2 ⊃ N (all inclusions are strict). Furthermore, K is not convex.

Since the row maximums (boxed) form a cyclic permutation of the players, the
induced permutation game is indeed cyclic, so the non-interval coalitions can be
ignored both in computing the surplus values for the kernel conditions and in the
lexicographic center procedure.

Allocation x= (7, 2, 7, 2, 5) is in the core and provides an excess of at most
−1 for all coalitions and exactly −1 excess for the intervals shown on the right in
Figure 5. On the left, the matrix of dual slacks at a particular (ux, vx) ∈ m−1(x)

ux\vx 0 0 0 0 0

7 -6 0 -7 -1 -7

2 -1 -2 0 -2 -1

7 -5 -1 -7 0 -7

2 -2 -2 -1 -2 0

5 0 -2 -3 -1 -5

x = ( 7 2 7 2 5 ) ∈ K ∩X1

(1, 4) ↔ 1 . . 4 5

(3, 2) ↔ . 2 3 . .

(2, 5) ↔ 1 2 . . 5 ε1 = −1

(4, 3) ↔ . . 3 4 .

(2, 1) ↔ 1 2 . . .

(5, 4) ↔ . . . 4 5

Figure 5: Slacks at (ux, vx) and the maximum excess intervals at x

is given. Since the intervals of maximum excess at x form a completely separating
family of coalitions, we have sij(x) = −1 = sji(x) for all i 6= j, so x ∈ K.

Since there are two partitions among the maximal excess interval coalitions
(corresponding to the off-π entries having maximal slack of the two loops indicated
in the slack matrix in Figure 5, one in darker gray), in procedure (2) we have
ε1 = −1 and {[4, 1], [2, 3], [5, 2], [3, 4]} ⊆ Σ1. Consequently, in this game LC = X1

is a lower dimensional subset of C = X0. The intervals in Σ1 separate all pairs of
players except 1 and 5. It follows that any least-core allocation satisfies 9 of the
10 =

(
5
2

)
kernel equalizers with surplus level −1, hence, the kernel points are exactly

those payoff vectors in LC = X1 for which s15(.) = s51(.) also hold. Notice that the
entire family of maximal excess intervals at x is not balanced, the intervals [1, 2]
and [4, 5] cannot be augmented with intervals from Σ1 to form a balanced collection
(accordingly, the corresponding off-π entries (2, 1) and (5, 4) (in gray circles) are in
no loop formed by maximal slack entries in the matrix).

It is easily checked that dim(X1) = 2 (the rank of the membership vectors for
coalitions in Σ1 is 3) and x is a vertex of X1. However, from x there is only one
feasible direction in X1 along which the payoff vectors also respect the s15(.) = s51(.)
kernel condition, namely d1 = (−1, 2,−2, 2,−1). Since K ⊆ LC = X1, around x
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all kernel points are of the form x + λd1 for some 0 ≤ λ ≤ 1. The situation at the
other endpoint y = x+ d1= (6, 4, 5, 4, 4) of this line segment is shown in Figure 6
with a particular choice of (uy, vy) ∈ m−1(y).

uy\vy 1 2 0 2 0

5 -5 0 -5 -1 -5

2 -2 -4 0 -4 -1

5 -4 -1 -5 0 -5

2 -3 -4 -1 -4 0

4 0 -3 -2 -2 -4

y = ( 6 4 5 4 4 ) ∈ X2 ⊆ K
(1, 4) ↔ 1 . . 4 5

(3, 2) ↔ . 2 3 . . ε1 = −1

(2, 5) ↔ 1 2 . . 5

(4, 3) ↔ . . 3 4 .

(2, 1) ↔ 1 2 . . .

(5, 3) ↔ . . 3 4 5 ε2 = −2

(5, 4) ↔ . . . 4 5

Figure 6: Slacks at (uy, vy) and intervals of the two highest excesses at y

Since there is a new partition among the coalitions having excess −2, we get
ε2 = −2 and {[1, 2], [3, 5]} ⊆ Σ2 (the corresponding off-π entries (2, 1) and (5, 3)
with slack −2 form a new loop connected to one of the previous level loops). Since
[1, 2] and [3, 5] separate 1 and 5, it follows that s15(t) = −2 = s51(t) holds for any
t ∈ X2, so X2 ⊂ K. The above allocation x ∈ X1 \X2 shows that the inclusion is
indeed strict.

It is easily checked that dim(X2) = 1 (the rank of the membership vectors for
coalitions in Σ1 ∪ Σ2 is 4), so X2 is a line segment with y as one of its endpoints
and d2 = (−2, 2,−2, 2, 0) as its directional vector from y. The other vertex of X2 is
z = y + d2= (4, 6, 3, 6, 4), as it is easily read from Figure 7. Notice that the only
change among the intervals having excess −2 at y and at z is that [4, 5] is replaced
by its complement [1, 3] (the corresponding −2 slacks are in gray circles).

The nucleolus is the midpoint of X2, where both [4, 5] and its complement [1, 3]
have excess −3 (and all other not yet listed coalitions have excess not more than
−3), i.e., N = X3 = {1

2
y + 1

2
z} = {(5, 5, 4, 5, 4)}. On the other hand, the kernel is

the union of the line segment X2 and the line segment in X1 joining x and y, i.e.,

K = {λx+ (1− λ)y : 0 ≤ λ ≤ 1} ∪ {λy + (1− λ)z : 0 ≤ λ ≤ 1}.

These two line segments have different directional vectors (d1 6= d2), so the ker-
nel is not convex. Indeed, at w = 1

2
x + 1

2
z=(11/2, 4, 5, 4, 9/2) we have s51(w) =

e([3, 5], w) = −5/2 < −3/2 = e([1, 2], w) = s15(w), so w ∈ X1 \ K, implying that
the kernel is not convex and it is indeed a proper subset of X1. Therefore, in this
5-player (cyclic) permutation game (which has a full-dimensional core) the claimed
chain C = X0 ⊃ LC = X1 ⊃ K ⊃ X2 ⊃ N of strict inclusions indeed holds.
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uz\vz 1 4 0 4 0

3 -3 0 -3 -1 -3

2 -2 -6 0 -6 -1

3 -2 -1 -3 0 -3

2 -3 -6 -1 -6 0

4 0 -5 -2 -4 -4

z = ( 4 6 3 6 4 ) ∈ X2 ⊆ K
(1, 4) ↔ 1 . . 4 5

(3, 2) ↔ . 2 3 . . ε1 = −1

(2, 5) ↔ 1 2 . . 5

(4, 3) ↔ . . 3 4 .

(2, 1) ↔ 1 2 . . .

(5, 3) ↔ . . 3 4 5 ε2 = −2

(3, 1) ↔ 1 2 3 . .

Figure 7: Slacks at (uz, vz) and intervals of the two highest excesses at z
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