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Cooperation with Externalities and Uncertainty

Helga Habis - David Csercsik

Abstract

We introduce a new class of cooperative games where the worth of a coalition depends on
the behavior of other players and on the state of nature as well. we allow for coalitions to
form both before and after the resolution of uncertainty, hence agreements must be stable
against both types of deviations. The appropriate extension of the classicakl core concept,
the Sustainable Core, is defined for this new setup to test the stability of allocations in such
a complex environment.

A prominent application, a game of consumers and generators on an electrical energy
transmission network is examined in details, where the power in- and outlets of the nodes
have to be determined in a way, that if any line instantaneously fails, none of the remaining
lines may be overloaded. We show that fulfilling this safety requirement in a mutually

acceptable way can be achieved by choosing an element in the Sustainable Core.

Keywords: partition function form games, uncertainty, core, sustainability

JEL classification: C71, C73, D62, L14, L94



Kooperacio externaliak és bizonytalansag mellett

Habis Helga — Csercsik David

Osszefoglalo

Bevezetjik a kooperativ jatékelmélet egy olyan Uj jatékosztalyat, amelyben egy koalicio
értéke fiigg a tobbi jatékos viselkedésétdl és a vilagallapottdl is. Egy koalicié megalakulhat a
bizonytalansig felold4sa el6tt és utén is, igy a megolddsnak mindkét tipusu blokkolassal
szemben stabilnak kell lennie. Kiterjesztjik a klasszikus mag definiciéjat erre a komplex
kérnyezetre, definialjuk a fenntarthaté magot (sustainable core).

Részletesen elemzink egy fontos alkalmazast, amely az elektromos atviteli haldzatokat
érinti. Ezekben az energiabetaplélast és -fogyasztast ugy kell meghatéarozni, hogy a rendszer
még egy vezeték hibaja esetén is stabil maradjon, azaz a megmaradt vezetékek nem lehetnek
tulterheltek. Megmutatjuk, hogy ezen rendszerbiztonsagi feltétel biztosithatd, ha egy
fenttarthatd magbeli elemet valasztunk. Ez a megoldéas rédadasul a fogyasztok és a termelSk

szamara is elfogadhat6 elosztast biztosit.

Targyszavak: particios fliggvény alaku jatékok, bizonytalansag, mag, fenntarthat6sag

JEL kodok: C71, C73, D62, L14, L94
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Abstract

We introduce a new class of cooperative games where the worth of a coalition
depends on the behavior of other players and on the state of nature as well. We allow
for coalitions to form both before and after the resolution of uncertainty, hence agree-
ments must be stable against both types of deviations. The appropriate extension of
the classical core concept, the Sustainable Core, is defined for this new setup to test
the stability of allocations in such a complex environment.

A prominent application, a game of consumers and generators on an electrical
energy transmission network is examined in details, where the power in- and outlets
of the nodes have to be determined in a way, that if any line instantaneously fails,
none of the remaining lines may be overloaded. We show that fulfilling this safety
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1 Introduction

Cooperative game theory analyzes how the gains of cooperation is to be divided among the
members of a coalition. The most famous solution to this problem is the core (Gillies, 1959).
In a classical, static cooperative game it is implicitly assumed that players can make binding
agreements regarding the allocation of the value of a coalition if they cooperated. In most
real life situations the core is not applicable, since its assumptions are too restrictive. At
the same time cooperative game theory is often criticized for not being able to incorporate
externalities appropriately. In this paper we introduce a new class of transferable utility
games, where we allow for dynamics, uncertainty and externalities as well, and propose
an extended notion of the core as a solution to this game which relaxes its restrictive
assumptions.

Dynamic cooperation has already been studied by a number of papers. The introduc-
tion of dynamics only, already raises a crucial question; namely what are the consequences
of a current deviation for the future, or more precisely, how to define a profitable devi-
ation? Different answers to this question lead to different solution concepts; the Social
Nash Optimum (Grossman, 1977), the core (Bester, 1984), the Segregated Core (Repullo,
1988), the Two-stage Core (Koutsougeras, 1998), the Strong Sequential Core (Predtetchin-
ski, Herings, and Peters, 2002) and the Weak Sequential Core (Kranich, Perea, and Peters,
2005; Habis and Herings, 2010). Habis and Herings (2011a) give a comparison of all these
concepts in a two-period general equilibrium setting and conclude that the Weak Sequen-
tial Core is the most satisfactory concept so far. Habis and Herings (2011b) introduce
transferable utility games with uncertainty, define the Weak Sequential Core in this setup
and give its characterization.

In many cases the value of a coalition may well depend on the behavior of the rest
of the players, thus we may have externality among coalitions. This situations can be
modeled by a partition function form game, introduced by Thrall and Lucas (1963). They
take the pessimistic approach that residual players aim to minimize the payoff of the
deviators. This idea is in the spirit of the a-core (Aumann and Peleg, 1960), defined for
NTU-games, where it is assumed that a coalition deviates only if it gets a higher payoff
irrespective of the induced partition of the rest of the players. Its complete opposite is
the optimistic approach of the w-core (Shenoy, 1980), where deviators expect to be helped

by residuals. A more rational reaction is applied in the v-core (Chander and Tulkens,



1997), where the deviating coalition must face individually best responses. Here it is true
again, that different assumptions regarding residual behavior may lead to further different
solution concepts; e.g. Hart and Kurz (1984); van der Laan and Cornet (1998); Huang and
Sjostrom (2003). Here we will concentrate on the Recursive Core by Koczy (2007), since
it is less sensitive to optimism or pessimism than the a- and w-cores, furthermore allows
a rational residual response as the ~v-core, but this response is general, endogenous and
consistent with the solution of the main game.!

In this paper we will combine the above two directions of research, and allow for the
presence of uncertainty and externalities at the same time by introducing the partition
function form game with uncertainty (hereafter PFU-game). A PFU-game consists of two
time periods, 0 and 1. In period 1 one out of a finite number of states of nature may
materialize and conditional on the state, the players are involved in a particular partition
function form game. An outcome therefore specifies a payoff-partition configuration con-
ditional on each possible state of nature. A utility function is then used to assign a utility
level to each profile of state-contingent payoffs.

We are interested in the appropriate definition of the core of a PFU-game. In this setting
coalitions (forming some partition) are allowed to form in both time periods. Stability
requires that a suggested allocation cannot be blocked by any coalition at any period,
i.e. both before and after the resolution of uncertainty. Binding agreements are clearly
not natural in such an environment, thus only self-enforcing agreements should be allowed
for. These considerations lead to the concept of the Sustainable Core. Extending the
characterization of the Weak Sequential Core (Habis and Herings, 2011b), we say that an
allocation belongs to the Sustainable Core only if conditional on the state of nature it
belongs to the Recursive Core of the PFF-game related to that state, and moreover there
is no coalition (forming some partition) in period 0 that can propose state-contingent
Recursive Core elements of the game restricted to that coalition, which gives its members
higher utility.

An important application of the PFU-game is the electrical energy transmission net-
work, where consumers and generators need to find a stable allocation of power in- and
outlets, taking into account possible line failures. Csercsik and Koczy (2011) show that
both negative and positive externalities exist in a static electrical energy transmission net-

work game of generators and consumers, and therefore suggest the Recursive Core as a

'Further desirable properties are discussed in (Koczy, 2006).



solution concept. Here we extend their example by the possibility of line failures in the
grid, which creates the uncertainty. We show that the Sustainable Core can be used to

find a solution to this extended game.

The organization of the paper is as follows. First we introduce the notation and the
definition of the core for the PFF-game in Section 2 followed by the definition of the
PFU-game and our solution concept in Section 3. The application to the electrical energy

transmission network is analyzed in Section 4 in detail, finally Section 5 concludes.

2 Preliminaries

Let N = {1,2,...,n} be the set of players, and its non-empty subsets are the coalitions,
denoted by C'. A cooperative game with transferable utility, or characteristic function form
game, is a pair (N, v), where v : 2% — R is a characteristic function which assigns to each
coalition C' C N its worth v(C), with the convention that v(()) = 0.

2.1 Partition Function Form Games

A partition P is a set of disjoint coalitions; P = {C*, C? ..., C™}, where their union
is N; i.e., players in set K cooperate if and only if K € P. The set of partitions is P
and the set of partitions of C' € N is P(C), with a typical element P®. A partition
function; w : P — (2¥ — R) assigns a characteristic function to each partition. A
cooperative game with transferable utility in partition function form, or briefly PFF-game,
is a pair (N, w), and it is an extension of the characterization function form game where
we allow for externalities across players and coalitions; hence, the worth of a coalition
may be different in each partition. For C' € P, let the worth w(C, P) denote the amount
that the players in C' can guarantee themselves by cooperating, when the coalition C' is
embedded in the partition P. An outcome is a pair w = (x, P), consisting of a payoff
vector x = (2',...,2") € RV satisfying feasibility; >, ocp 2’ < w(C, P) for all C € P,
and a partition P € P. The payoff for a coalition C is a vector ¢ = (2');cc € R”. Let us
denote the the set of outcomes in (N, w) by Q(N,w).

In a PFF-game whether a coalition has a profitable deviation, depends on the induced

partition of the players. There are a number of ways to model the reaction of the remaining



players, which lead to different solution concepts. Here we concentrate on the Recursive
Core by Koczy (2007), that allows the remaining, residual players to freely react, and form
a core-stable partition before the payoff of the deviating coalition is evaluated. Thus, given
a deviation, the residual players face the problem of solving another, smaller PFF-game.

We call this a residual game.

Definition 2.1. Consider a game (N,w) and a player set R C N. Assume R = N \ R
have formed the partition P® € P(R). Then the residual game (R, w”") is the PFF game
over the player set R with the partition function given by w”"(C, P®) = w(C, PR U PF).

Observe that the subset of players in the residual game still experience the externalities
from the players in R. Hence, if the core is the solution for (N, w), then the core solves the
residual game (R, w” E) as well. The definition of the residual game is similar to that of the
reduced game (Moulin, 1985), where the payoff structure of the larger game is accounted
for, but the significance of the partition of R is not considered.

Next we define the Recursive Core in the spirit of (Koczy, 2007), by induction on the

number of players.

Definition 2.2 (Recursive Core). The definition consists of three steps. Consider a
PFF-game (N, w).

1. Trivial game For a single-player game N = {1} the Recursive Core is trivially defined.

2. Recursion and dominance Now assume that the Recursive Core has been defined for
all games with k& — 1 players. Then for a k-player game N = @Q U Q an outcome
w = (z, P) is dominated through a coalition ) forming partition P9 and an outcome
(y, PRU P?) € Q(N, w), if

(a) when RC(Q,wPa) # @ then for all P? satisfying (y?, P9) € RC(Q,wPQ) and
for all 7 € Q it holds that y* > 2%, and

(b) when RC(Q, wP?) = @ then for all P? and for all i € Q it holds that y > a'.

3. Core The Recursive Core of the PFF game (N, w), denoted by RC(N, w), is the set

of undominated outcomes.

According to Definition 2.2 a deviating coalition @) has to evaluate the profit it can

achieve based on the outcome of the residual game, where a rational residual behavior is
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expected. We assume conservatism of the deviators only among the remaining possible
outcomes in the following sense. If the Recursive Core of the residual game is nonempty,
then the members of coalition @ expect the lowest possible payoffs of the stable outcomes
(y, PPUP®) € Q(N, w) with (y?, P?) € RC(Q, wPa). If the Recursive Core of the residual
game is empty, then the payoff of the members of the deviating coalition must be higher
than the given one regardless of the coalition structure of the residual players.

The Recursive Core is well-defined, though it may be empty. Observe that all outcomes
w = (z, P) € RC(N, w) are Pareto efficient; >, ocpy 7' = w(C, P) for all C' € P.

Based on the concept of the Recursive Core, a minimal claim function can be defined,
which describes the minimal claim of each coalition in the corresponding PFF game reduced
to that coalition. This function, termed v™¢ in the following, may be applied in the same
spirit as a characteristic function, since it assigns a unique value to each coalition, which

they can secure for themselves if they deviated. The formal definition of v™¢ is as follows.

Definition 2.3. Let us consider the residual game (C, w®) over the player set C defined by
the partition function w®(K, PY) = w(K, P° U C) where K € PC € P(C). Let us denote
the Recursive Core of the residual game by RC(C,w¢). The minimal claim function v™¢

can be defined as

UmC(C) = { minziecxi{Q(N,w)’(x, Pé) S RC(CY, wc)} Zf RC(C_',U}C) 7&

0
miny i { Q(N,w)} if RC(C,w%) =1

where v™¢(C') is the minimal claim of coalition C.

With the help of the minimal claim function, a characterization of the Recursive Core

can be given as follows.

Lemma 2.4. The Recursive Core RC(N,w) of the game (N,w) is a collection of Pareto
efficient outcomes (x, P) € Q(N,w), such that there is no coalition C with v™(C) >

Diec T
Proof. Holds by construction. O
Using the minimal claim function one can find the Recursive Core of the game very

efficiently without needing to consider the deviations of all possible coalitions and parti-

tions. We illustrate this through the 5-player game example of Koczy (2006). We use the



simplified notation here following the original one, we write the coalitional values for a

partition as a vector to keep the example as transparent as possible.

Example 2.5. Consider a game with N = {1,2,3,4,5}, and w given by;

w(123,4,5) = (10,1,1),
w(123,45) = (0,5),
w(12,3,4,5) = (0,1,0,0),
w(12,3,45) = (0,1,0),
w(1,2,3,45) = (0,0,1,0),

w(12,345) = (5,0),
w(1,2,345) = (1,1,8),

with all other payoffs being zero.

The minimal claim function can be derived as follows: The deviation of the coali-

tion C' = {{2},{3,4,5}} €
P({2,3,4,5}) in the residual game ({2,3,4,5},w}). Thus, the worth of Player 1 is
w({1}, PU{1}) = 1, hence v"¢(1) = 1. The minimal claims of the rest of the coalitions,

shown in Table 1, can be derived in the same manner.

{1} for instance induces the (only stable) partition P =

Table 1: Minimal claim function
C {1y {2} {3} {4} {5} {12} {45} {123} {345}
v™e(C) 1 1 0 1 1 0 0 0 0 0

other

Now, for a Recursive Core element it must be true that each coalition receives at least
its worth as a payoff; 2!, 22, 2*,2° > 1. This leaves us with two possible stable partitions;
P = {{1,2,3},{4},{5}} with a total payoff of 12 and P, = {{1},{2},{3,4,5}} with a
total payoff of 10 to be divided appropriately.

3 Games with Uncertainty

We model uncertainty in a dynamic setup; we consider a game with two periods, t € T' =
{0,1}. In period 1, one state of nature s out of a finite set of states of nature S occurs. We

define the state of nature for period 0 as state 0, so the set of all states is S’ = {0} US. Our
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interest is clearly in the cases with non-degenerate uncertainty; [S| > 1. In period 1 the
players are involved in a PFF-game I'y = (N, wy), where the game itself is allowed to be
state-dependent. Period 0 serves as a point in time prior to the resolution of uncertainty.

Player i € N evaluates his payoffs by a utility function v’ : RS — R, which assigns to
every profile of payoffs x' = (2¢,... 2%) € R a utility level u'(z?) and is assumed to be

%
s

i

. ) is monotonically

continuous and state-separable, i.e. u'(z') = Y _oul(x), where ul(z
increasing. A well-known example of utility functions satisfying these assumptions is the

von Neumann-Morgenstern utility function.

3.1 The Model

A PFF-game with uncertainty is defined as follows.

Definition 3.1. A partition function form game with uncertainty (PFU-game) I is a tuple

(N, S, w,u) where w = (wy, ..., wg) and u = (u',...,u").

Note that state 0 merely serves as a point in time where players face future uncertainty

and may decide to cooperate (to pool risk for instance).

The outcome of the game is an ordered pair (z, P), where the x = (z!,... 2") € RS
matrix is called an allocation, and P = (Py,..., Ps) a partition for each subgame. Let
Q(x, P) denote the set of outcomes in I'. The state-s component z, = (z!,... 27) € RY

of an allocation is referred to as the allocation in state s € S. The set of partitions in 'y
is P, and the set of partitions in I'y of C' € N is Py(C) with a typical element PC. Let
I'® denote the residual PFF-game played in state s by player set R. The payoff allocation
matrix must satisfy a feasibility constraint; given the partition P, for all C' € P we have
> icc @t < wy(C, P) for all s € S. The central question of a PFU-game is finding a stable
outcome.

We study which outcomes of the game I' are stable. In general an outcome is stable if
no coalition ever can benefit from a deviation. That is, we require that there should be no
blocking possible in the subgames in ¢ = 1 or before the resolution of the uncertainty in
t=0.

Thus we will require form a stable outcome (x, P) of the game I' that each of its
components (z,, Ps) belongs to the Recursive Core of the subgame I'y; to prevent any

future deviation.



Now we are ready to define the Sustainable Core by means of the Recursive Core of

suitably chosen subgames.

Definition 3.2 (Sustainable Core). An outcome (z, P) belongs to the Sustainable Core
of the game I', denoted by SC(I'), if and only if

(a) (x, P) is such that (x4, Ps) € RC(Ly) for all s € S,

(b) and there is no coalition R € N forming some partition P? € P(R) and outcome
(zf, PR) such that (2%, PF) € RC(T'F) for all s € S, and v/(#) > u/(x?) for all i € R.

It means that for an outcome to belong to the Sustainable Core of the PFU-game I,
the outcome should belong to the Recursive Core of the PFF-game I'; in every state s € S.
Moreover, no coalition (forming some partition) should be able to pick an element of the
Recursive Core of the game restricted to R in every state, and in doing so improve utility
in an ex ante sense. Since we require the deviating coalition to pick a Recursive Core
element, no further counter-deviation from it can be expected by any sub-coalition; i.e.
the blocking allocation is indeed self-enforcing.

Note, that if there is no externality, the game boils down to a transferable utility game
with uncertainty, and so the definition of the Sustainable Core will coincide with that of
the Weak Sequential Core. Similarly, if there is no uncertainty, than we have a single
PFF-game with the Recursive Core as the solution to it.

In a PFU-game one can distinguish ex ante and ex post efficiency.
Definition 3.3. An outcome (Z, P) is ex ante efficient in the game I if:
(i) Yien T < w(N, P), and

(ii) there does not exist an outcome (z, P) with 3.y z* < w(N, P) such that u'(z") >
u'(z?) for all i € N.
Definition 3.4. An outcome (Z, P) is ez post efficient in the game I'if Y, 7' = w(N, P).
Note, that the concept of ex post efficiency says more than the usual feasibility condi-
tions in TU-games, since it requires Y,y Z. = w,;(N, P). to hold at all states s € S, but

contrary to ex ante efficiency it does not imply Pareto efficiency, since it does not consider

reallocation possibilities across states.

The next observation follows from the Pareto efficiency of the Recursive Core.



Corollary 3.5. If (z, P) € RC(I) then (z, P) is ex post efficient.

Note, on the other hand, that outcomes need not be ex ante efficient. Since binding
agreements are not allowed for here, certain utility transfers across states might not be

feasible.

4 Application: Safety Critical Rescheduling of Genera-

tors in The Electrical Power Transmission Network

The liberalization of the electricity markets, and the privatization and restructuring of
power systems in the last decades resulted in an increased effort to fully economically
exploit the infrastructure of the power grid. With this trend, the risk of failures has
increased as demonstrated by the large blackouts observed (Fairley, 2004; Hines, J.Apt,
and Talukdar, 2009). As emphasized by Beccuti, Demiray, Andersson, and Morari (2010),
the situation is complicated by the fact that electrical power grids are large interconnected
systems covering large areas where the control actions of a regional operator may adversely
affect other components located hundreds of kilometers away. This observation suggests
that the problem can be modeled by a PFF-game.

To avoid such dramatic consequences as country-wide blackouts, power system oper-
ators use various methodologies to keep the power grid in safe operational state. The
protocols applied in these cases of security arrangements may affect the electricity market.

In this application we analyze, how the possibly occurring emergency procedures may be
taken into account by the various stakeholders of the electricity market during the planning
of transmission contracts. For the aim of simplicity we consider only line failures (no
generator failures). We have to note that the method demonstrated here, the application
of a PFU-game, can be straightforwardly applied to other scenarios of uncertainty; for
example to network expansion scenarios, in which the uncertain expansion is assumed to
be (partially) independent of the market participants, who represent the players of the

transmission game.

4.1 PFF-game on The Transmission Network

Previously, a PFF-game for the electrical transmission networks has been defined in (Cserc-

sik and Koczy, 2011). The most important features of the applied transmission model are
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the following. The admittance values (Y) and the injected/consumed energy amounts of
the nodes uniquely determine the energy flows on the edges (branches or lines) of the net-
work, which can be obtained by the solution of a system of linear equations. In addition
to its admittance value, each edge is characterized by a transfer capacity (q), which cor-
responds to the maximal amount of energy which can be transferred on it. Furthermore,
as a most simple approach we neglect transmission losses. For the sake of simplicity we
will assume that every node of the energy transmission network corresponds to a certain
generator or consumer. For further information on DC load flow models, see Oren, Spiller,
Varaiya, and Wu (1995) and Contreras (1997).

Players of the game correspond to nodes (generators or consumers), while coalitions of
the game correspond to balancing groups for which the total inlet and outlet power has to
be equal. A central independent network regulator may limit the power in and outlet of
the coalitions (in other words reschedule the generators and curtail the loads) in order to
maximize the total power transmitted by the network and secure the safe operation of the
system and avoid line overloads. The value of a certain coalition in this setup is determined
as twice the total transmission within the coalition.

In the current paper, based on the defined model, the safety-critical rescheduling of gen-
erators and load curtailment in the case of an instantaneous failure of a single transmission
line is analyzed.

Electrical power transmission networks are safety critical systems, which have to be
operated in a fault-tolerant manner. Assuming a basically safe operation, in the case of
sudden line or generator failure, the flows in the network change instantaneously, poten-
tially enhancing the vulnerability of the system. In such cases the rescheduling of the
system is needed to prevent further, possibly more dramatic failures (Thanikachalam and
Tudor, 1971; Kaltenbach and Hajdu, 1971).

As foreshadowed, in this work we will consider only line failures. Regarding our DC
load flow model defined in (Csercsik and Koczy, 2011) this means, that in the case of basic
operation, the power in and outlets of the nodes have to be determined in a way, that
if any line instantaneously fails, none of the remaining lines may be overloaded. We will
call this a safe state of the system. This network stability requirement may be included
in the LP problem described in eq. 13 of (Csercsik and Koczy, 2011), by adding further
inequality type constraints, which describe transfer limitations under line failures.

Basically, in the case of a line failure, the system may loose this stability property (the

11



failure of an additional more line may lead to network flows, which exceed the maximum
capacity of a certain line, or lines). In this case the generators of the system need to be
rescheduled and the loads are curtailed to bring the system in a safe state again. This must
be done in a way which implies the minimal total change in generation and consumption
values (Kaltenbach and Hajdu, 1971). In the following we will demonstrate the importance

of the failure induced safety critical rescheduling on a simple 4-node network.

Example

Let us consider the network depicted in Figure 1.

(10) (10)

®) ®)

Figure 1: The basic structure and parameters of the 4-node network. Y;; corresponds
to the admittance value of the line between ¢ and j, while g;; denotes the value of the
maximal possible energy transfer on the corresponding line (power transmission capacity).
The numbers in parentheses at the nodes correspond to maximal generating capacity and

desired consumption.

If we assume the grand coalition to form, which implies only one equality type con-
straint corresponding to the balance of total inlet and outlet power, the a safe network
configuration corresponding to maximal total transmission (which in this case satisfies all
consumers) is depicted in Figure 2a.

Since we assume a stable nominal operation, the line capacities are not exceeded in the
case of the first failure (as depicted in Figure 2b), but without generator rescheduling and
load curtailment after the second failure of line 2-4, line 2-3 is overloaded (which would
lead to further failures). Via overheating of these lines, this may lead to further avalanche
of failures and emergency shutdowns in critical case, which may lead to costs of billions

of $§/EUR in most serious cases (Fairley, 2004). We assume that all generators can be
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5(5) 5(5)

Figure 2: Basic (safe) operation of the 4 node network without failures, flows without
rescheduling in the case of the failure of line 1-2, and in the case of the failure of line
1-2 and 2-4: The first failure does not lead to line overload, but without rescheduling the

second failure causes the overload of line 2-3.

rescheduled, and all loads can be curtailed - of course this is not the case in a realistic
scenario, where some consumers are treated with priority in general. If we reschedule the
generators and apply load curtailment after the first failure of line 1-2 in order to bring
the network in safe state again (we do this under the constraint of implying minimal total
change in generation values and loads), the second failure of the line 2-4 will not cause

overload of any other lines as depicted in Figure 3.

3.4 (10) 4.1(10) 3.4 (10) 4.1 (10)

3.5 (5) 4(5)

Figure 3: Rescheduling of the network after the failure of line 1-2: The second failure of line
2-4 does not overload the remaining lines. Line 2-3 operating on the edge of his capacity

shows, that the rescheduling of generators and the curtailment of loads was justified.
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4.2 The Power Transmission Game with Safety Critical Reschedul-
ing

To define a cooperative game taking into account the uncertainty corresponding to the

possible failure of lines, and the implied rescheduling which is causing changes in the

transfer of certain coalitions, we use the formalism defined in Section 2.

In the case of m lines, each of which may fail, we have S = m + 1 number of states
of nature in period ¢ = 1. The first state, s;, corresponds to the normal (error-free)
operation of the network, and the remaining m states describe the possible failures of the
corresponding m lines. This implies that we will have m + 1 state-dependent partition
function form games.

We will demonstrate the calculation of the Sustainable Core in the case of the net-
work depicted in Figure 1. The state-dependent minimal claim function corresponding to
the normal operation and to the failures of certain lines, and the implied safety critical
rescheduling are listed in Table 1. s = 1 corresponds to the error-free operation of the
network, while s = 2 corresponds to the error of the line 1-2, s = 3 to the error of the line
1-3, s = 4 to the error of the line 1-4, s = 5 to the error of the line 2-3, s = 6 to the error
of the line 2-4 and s = 7 to the error of the line 3-4.

Table 2: Minimal claim function; v

coalition s=1 s=2 | s=3 | s=4 s=b s=6 s=T7
0 0 0 0 0 0 0 0
{1} 0 0 0 0 0 0 0
{2} 0 0 0 0 0 0 0
{3} 0 0 0 0 0 0 0
{4} 0 0 0 0 0 0 0
{1,2} 10 7 10 7 10 7 9.58
{1,3} 0 0 0 0 0 0 0
{1,4} 10 8 10 8 9.97 8 10
{2,3} 10 7 7 7 7.02 7 7
{2,4} 0 0 0 0 0 0 0
{3,4} 10 8 7 8 8 8 5.92
{1,2,3} 10 7 10 10 10 7 10
{1,2,4} 17.08 10 10 10 14.44 15 14.12
{1,3,4} 10 10 10 8 10 8 10
{2,34} | 1472 | 13 7 12 8 14.12 7
{1,2,34} | 20 15 17 | 15 18 15 17

To evaluate the players’ payoffs, we assume that all four players in our Example have
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the following utility function;

s=7
u' (') = 0.88(1 — e ") + 3 2 0.02(1 — e ") for all i € N.

s=2
One can interpret this expression as a von Neumann-Morgenstern utility function, where
the probability of error-free operation is 88%, and the probability of any line failing is 2%.

Now consider the following allocation:

291226 7.08774 2.91226 7.08774

2 5 2 6
5.7565 4.2435  2.7565  4.2435
r= 3 4 3 5 e RV,
5.51228 4.48772 3.21021 4.78979
0 7 0 8

5.53279 4.36166 2.63834 4.46721

It is easy to show that this allocation belongs to the Sustainable Core of the above
defined game. First, one can check that x; € RC(I's) holds for all s € S, thus there
is no blocking possibility in time period t = 1. Now we only need to see if Part (b) of
Definition 3.2 holds. We show next that z maximizes the sum of the players’ utilities over

allocations #¢ with ¢ € RC(I'Y) for all s € S.

Consider the following constrained maximization problem,

7 7
max Y ' (a')

ieC
8.t Zx’s =ul(C), seSs, (1)
eC
doal =u™(D), s€S 0#DCC, (2)
€D

where condition (1) is required for ex post efficiency and inequality (2) is a no-blocking
condition. A solution to the maximization problem maximizes the sum of the players’
utilities among those allocations that belong to RC(I'Y) for all s € S. Since the given
allocation x is a solution to this problem, it follows that there is no blocking possible in
period t = 0 either.

Hence, x € SC(I).
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It is worthwhile to note that this outcome is not really sensitive to the exact choice of

the utility functions; e.g. the given = would also be a solution if the utility functions were
(') = 0.4(1 — e 1) 43 T 0.1(1 — e "0 for all i € N.
s=2

This example demonstrates that using a cooperative game and the concept of the
Sustainable Core may help us to find such stable solutions to such difficult problems as the
safety-critical operation of the power transmission networks that take into account possible
line failures as well. This solution may be used in reality to facilitate immediate reaction
to possible failures, which might lead to disastrous outcomes if reaching an agreement after

the failure would take any time.

5 Conclusion

While in numerous real-life situations agreements have to be achieved in an environment
with externalities and uncertainty about the future, the cooperative game theory literature
has not considered this scenario yet. In this paper we introduced a new class of games, the
partition function form games with uncertainty, to provide a framework to analyze these
problems. We also proposed the Sustainable Core to solve the game, which is an extension
of the Recursive Core and the Weak Sequential Core to this more complex setup.

As a possible application we analyzed the game of consumers and generators on a lossless
DC load flow model of the electrical energy transmission network. While the described
safety critical rescheduling of generators and curtailment of loads in the case of an arising
line failure is a pure technological approach to avoid further overloads and shutdowns,
dealing with its possibility in energy transmission contracts raises economical questions,
for which the concept of the introduced sustainable core may serve as a possible solution
concept. In this concept we assumed that the probabilities of line failures are known to
each player of the game. A straightforward possible future scenario could be to analyze
how asymmetric information affects the results. In most of the practical cases, regional
generators have detailed information only about the network parameters in their area.
Players who can obtain information about other areas may possibly effectively increase
their bargaining potential and expected payoff compared to others.

The proposed framework may serve as a solution for many problems from environmental

agreements to the formation of trading blocks or common pool resource allocation issues.
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