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Solutions for the Stable Roommates Problem

with Payments

Péter Bir6 - Matthijs Bomhoff - Petr A. Golovach

Walter Kern - Daniél Paulusma

Abstract

The stable roommates problem with payments has as input a graph G(E,V) with an edge
weighting w:E—R+ and the problem is to find a stable solution. A solution is a matching M
with a vector peRV that satisfies [lpy+py=w(uv) for all uveM and p,=0 for all u unmatched in
M. A solution is stable if it prevents blocking pairs, i.e., pairs of adjacent vertices u and v with
putpv<w(uv). By pinpointing a relationship to the accessibility of the coalition structure core of
matching games, we give a simple constructive proof for showing that every yes-instance of the
stable roommates problem with payments allows a path of linear length that starts in an
arbitrary unstable solution and that ends in a stable solution. This result generalizes a result of
Chen, Fujishige and Yang for bipartite instances to general instances. We also show that the
problems Blocking Pairs and Blocking Value, which are to find a solution with a minimum
number of blocking pairs or a minimum total blocking value, respectively, are NP-complete.
Finally, we prove that the first problem is NP-complete also when a matching is prescribed,

whereas this variant of the second problem becomes polynomial-time solvable.

Keywords: roommates problem, matching game, cooperative game theory

JEL classification: C61, C63, C71, C78



Megoldasok a stabil szobatarsprobléma

kifizetéses valtozatara

Péter Bir6 - Matthijs Bomhoff - Petr A. Golovach

Walter Kern - Daniél Paulusma

Osszefoglalo

A stabil szobatars probléma kifizetéses valtozataban a bemenet egy G(E,V) graf w:E—R+
élsulyokkal és a feladat, hogy talaljunk egy stabil megoldast. Egy megoldas egy M parositasbol
és egy peRY vektorbol all, amelyre fennall, hogy pu+pv=w(uv) minden uveM-re és p,=0 minden
parositatlan u pontra. A megoldas stabil, ha nem talalhat6é ra blokkolé par, amely egy olyan
szomszédos u és v pontpart jelent, melyre pu+pv<w(uv). A parositasi jaték koalicios
strukturalis magjanak elérhetGségére vonatkoz6 kapcsolatra alapozva konstruktiv bizonyitast
adunk a kovetkezd tételre. Ha adott egy megoldhaté stabil parositds probléma Kkifizetéses
verzidja, akkor tetszéleges megoldasbdl indulva linearis 1épésben mindig el tudunk jutni egy
stabil megoldashoz blokkol6 parok kielégitésével. Ez Chen, Fujishige és Yang péaros grafokra
vonatkozd tételét altalanositja. Azt is megmutatjuk, hogy a blokkold élek szdméanak és a
blokkol6 érték minimalizaldsanak feladatai NP-teljesek. Végiil belatjuk, hogy az els6 probléma
akkor is NP-teljes, ha a parositas el6re adott, mig az utébbi probléma ugyanezen verzidja

polinom id6ben megoldhato.

Targyszavak: szobatars probléma; péarositds jaték; kooperativ  jatékelmélet;

bonyolultsagelmélet

JEL: C61, C63, C71, C78
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Abstract. The stable roommates problem with payments has as input
a graph G = (V, E) with an edge weighting w : F — R4 and the problem
is to find a stable solution. A solution is a matching M with a vector
p € RY that satisfies p, + p, = w(uv) for all uv € M and p, = 0 for all
u unmatched in M. A solution is stable if it prevents blocking pairs, i.e.,
pairs of adjacent vertices u and v with p, +p, < w(uv). By pinpointing a
relationship to the accessibility of the coalition structure core of matching
games, we give a simple constructive proof for showing that every yes-
instance of the stable roommates problem with payments allows a path of
linear length that starts in an arbitrary unstable solution and that ends
in a stable solution. This result generalizes a result of Chen, Fujishige
and Yang for bipartite instances to general instances. We also show that
the problems BLOCKING PAIRS and BLOCKING VALUE, which are to find
a solution with a minimum number of blocking pairs or a minimum total
blocking value, respectively, are NP-complete. Finally, we prove that the
first problem is NP-complete also when a matching is prescribed, whereas
this variant of the second problem becomes polynomial-time solvable.

1 Introduction

Consider a group of tennis players participating in a doubles tennis tournament.
Each two players estimate the expected prize money they could win together by
forming a pair in the tournament. Moreover, each player can negotiate his share
of the prize money with his chosen partner in order to maximize his own prize
money. Can the players be matched together such that no two players have an
incentive to leave the matching in order to form a pair together? This example

*** Supported by the Hungarian Academy of Sciences under its Momemtum Programme
(LD-004/2010).
T Supported by EPSRC Grant EP/G043434/1.



has been given by Eriksson and Karlander [6] to introduce the stable roommates
problem with payments. This problem generalises the stable marriage problem
with payments [14] and can be modeled by a weighted graph G = (V, E), i.e.,
that has an edge weighting w : E — R,. A vector p € RV with p, > 0 for all
u € V is said to be a matching payoff if there exists a matching M in G, such
that p, + py, = w(uwwv) for all wv € M, and p,, = 0 for each u that is not incident
to an edge in M. We then say that p is a payoff with respect to M, and we call
the pair (M,p) a matching with payoffs. A pair of adjacent vertices (u,v) is a
blocking pair of p € RV if p, + p, < w(uv), and their blocking value with respect
to p is ep(u,v)" = max{0, w(uv) — (p, + pu)}, which expresses to which extent
(u,v) is a blocking pair. We define the set of blocking pairs of a vector p € RV as
B(p) = {(u,v) | pu +pv < w(uv)}, and we define the total blocking value of p as
b(p) = > uver ep(u,v)T. The problem STABLE ROOMMATES WITH PAYMENTS
is to test whether a weighted graph allows a stable solution, i.e., a matching with
payoffs (M, p) such that B(p) = 0, or equivalently, b(p) = 0. This problem it
well known to be polynomial-time solvable (cf. [6]); recently, an O(nm+n?logn)
time algorithm for weighted graphs on n vertices and m edges has been given [3].
We consider two natural questions in our paper:

1. Can we gradually transform an unstable solution into a stable solution as-
suming that a stable solution exists?
2. Can we find solutions for no-instances that are “as stable as possible”?

Question 1 is of importance, as it will give us insight into the coalition formation
process. A sequence of solutions starting from an unstable one and ending in a
stable one is called a path to stability. Question 2 is relevant when we consider
no-instances of STABLE ROOMMATES WITH PAYMENTS. In order to answer it, we
generalize this problem in two different ways leading to the following two decision
problems. Given a weighted graph G and an integer & > 0, the BLOCKING PAIRS
problem is to test whether G allows a matching payoff p with |B(p)| < k, and
the BLOCKING VALUE problem is to test whether G allows a matching payoff p
with b(p) < k.

Questions 1 and 2 have been studied in two closely related settings that are
well known and formed a motivation for our study. The first related setting is
similar to ours except that payments are not allowed. Instead, each vertex w in
an (unweighted) graph G(V, E) has a linear order on its neighbors expressing
a certain preference. Then two adjacent vertices u and v form a blocking pair
regarding a matching M if either u is not matched in M or else u prefers v to
its partner in M, and simultaneously, the same holds for v. This leads to the
widely studied problem STABLE ROOMMATES introduced by Gale and Shapley
[7]. In this setting, the results are as follows. Answering a question by Knuth
[12], Roth and Vande Vate [13] showed the existence of a path to stability for
any yes-instance provided that the instance is bipartite. Later, their result was
generalized by Diamantoudi et al. [5] to be valid for general instances. Abra-
ham, Biré and Manlove [1] showed that the problem of finding a matching with
a minimum number of blocking pairs is NP-complete; note that the problem



BLOCKING VALUE cannot be translated to this setting, due to the absence of
cardinal utilities.

The second related setting originates from cooperative game theory. A coop-
erative game with transferable utilities (TU-game) is a pair (N, v), where N is
a set of n players and a value function v : 2V — R with v(()) = 0 defined for
every coalition S, which is a subset of N. In a matching game (N, v), the set N
of players is the vertex set of weighted graph G, and the value of a coalition S is
v(S) = > .car w(e), where M is a maximum weight matching in the subgraph of
G induced by S. The strong relationship between the two settings stems from the
fact that finding a core allocation, i.c., a vector x € RN with Y, 2w = v(N)
and ) oy > v(S) for all § € N is equivalent to solving the STABLE ROOM-
MATES WITH PAYMENTS (cf. [6]). The algorithms of Béal et al. [2] and Yang
[15] applied to an n-player matching game with a nonempty core find a path to
stability with length at most (n? +4n)/4 and 2n — 1, respectively. For matching
games, the problems BLOCKING PAIRS and BLOCKING VALUE are formulated as
the problems that are to test whether a matching game (N, E) allows an alloca-
tion x with |B(z)| < k, or b(z) < k, respectively, for some given integer k. Bird,
Kern and Paulusma [3] showed that the first problem is NP-complete and that
the second is polynomial-time solvable by formulating it as a linear program.

Our Results. In Section 2, we answer Question 1 by showing that any unsta-
ble solution for a weighted n-vertex graph G that is a yes-instance of STABLE
ROOMMATES WITH PAYMENTS allows a path to stability of length at most 2n.
This generalizes a result of Chen, Fujishige and Yang [4], who show the exis-
tence of a path to stability for the aforementioned stable marriage problem with
payments, which corresponds to the case when G is bipartite. In Section 3 we
answer Question 2 by proving that BLOCKING PAIRS and BLOCKING VALUE
are NP-complete. The latter result is somewhat surprising, as the corresponding
problem is polynomial-time solvable for matching games; we refer to Table 1 for
a survey. In addition, we show that BLOCKING VALUE does become polynomial-
time solvable if the desired matching payoff is to be with respect to some specified
matching M that is part of the input, whereas this variant of BLOCKING PAIRS
turns out to be NP-complete.

SR SRwP MG
Path to Stability Yes Yes* Yes
BLOCKING PAIRS |[NP-complete|NP-complete® [NP-complete
BLOCKING VALUE n/a NP-complete* P

Table 1. A comparison of the results for the existence of a path to stability and
the problems BLOCKING PAIRS and BLOCKING VALUE in the three different settings
of stable roommates (SR), stable roommates with payments (SRwP) and matching
games (MG). The three results marked by a * are the new results shown in this paper.



2 Paths to stability

We first give a useful lemma, which immediately follows from the aforemen-
tioned fact that finding a core allocation in a matching game (N, v) defined on
a weighted graph G = (N, E) is equivalent to finding a stable solution for G.

Lemma 1 ([6]). Let G be a weighted graph that forms a yes-instance of STABLE
ROOMMATES WITH PAYMENTS. Then G allows a stable solution (M*,p*) where
M* is a maximum weight matching of G.

Let G = (V, E) be a graph and M be a matching. If uv € M, then we say that
uw and v are partners in M, denoted M (u) = v and M (v) = u. If u is unmatched
in M, then we let M(u) = u. Let uv be a blocking pair for some payoff p with
respect to some matching M; note that uv ¢ M by definition. Let p’ be a payoff
with respect to a matching M’. We say that (M, p’) is obtained from (M, p) by
satisfying blocking pair (u,v) if the following four conditions hold:

(i) ww e M’;
(i) pu < pl, and p, < py;
(iii) if M(u) # w then let M(u) be unmatched in M" (hence p),,, = 0), and
if M(v) # v then let M(v) be unmatched in M" (hence pj,y = 0);
(iv) M'(z) = M(z) and p'(z) = p(z) for every z € V' \ {u, v, M (u), M (v)}.

That is, the players of a blocking pair become matched to each other by leaving
their former partners unmatched (if there were any) and they share the extra
utility coming from their cooperation in such a way that neither of them gets
worse off (and by the definition of a blocking pair, one of them strictly improves).

We say that (M’,p’) is obtained from (M,p) by satisfying blocking pair
(u,v) with respect to a payoff p* of some stable solution (M*, p*) that is called a
reference solution, if in addition to conditions (i)—(iv) also the following condition
is satisfied:

(v) if pu < py, then p;, < pj, and if p, < p; then p), < pj

We define S*(p) = {u € V(G) : py, > pl} to be the set of overpaid vertices
in (M, p) with respect to (M*, p*). We note that when (M’,p’) is obtained from
(M, p) by satisfying a blocking pair with respect to p* then S*(p’) C S*(p).

Our next result is based on the work of Kéczy and Lauwers [11] on the
so-called accessibility of the coalition structure core. Their result implies the
existence of a path to stability for any TU-game with a nonempty core. In this
setting, a path to stability is a sequence of gradual changes that transform a
non-core allocation to a core allocation. Recently, Béal et al. [2] and Yang [15]
built on the work of Kéczy and Lauwers [11] in order to show the accessibility of
the coalition structure core in quadratic time. In particular, Yang [15] obtained
a linear upper bound on the length of a path to stability for any TU-game with
a nonempty core. We can use their proof techniques [2,15] for our setting. Our
arguments are slightly different though, because for matching games (N, v) every



coalition S C N may be blocking instead of only pairs {u,v} as in our setting.
Moreover, the arguments of Yang [15] for restricting the path length cannot be
translated to obtain our linear upper bound. By pinpointing the connection to
the setting of cooperative games, we are not only able to generalize the cor-
responding result of Chen, Fujishige and Yang [4] for the existence of a path
to stability for bipartite instances (which are always yes-instances) to general
yes-instances, but we could also give a simpler proof of this result.

Theorem 1. Let G be a weighed n-vertex graph that forms a yes-instance of
STABLE ROOMMATES WITH PAYMENTS; Let (MY, p°) be a matching with payoffs.
Then there exists a path to stability of length at most 2n that starts in (M°, p).

Proof. Let G be a weighed n-vertex graph that forms a yes-instance of STABLE
ROOMMATES WITH PAYMENTS; we also call such a graph G stable. Let (M?, p°)
be a matching with payoffs. We fix a stable reference solution (M*,p*), where
we may assume that M* is a maximum weight matching due to Lemma 1. Note
that |[M*| < 2 and |[M°] < %. Moreover, |S*(p”)| < 2, because the vertices u
and v of a pair uv € M? cannot both belong to S*(p”), as otherwise p? > p¥,
p? > p¥ and w(uv) = pd + pY would imply that uv is blocking for (M*, p*).

Input: a matching with payoffs (M°, p®) in a weighted stable graph G

Output: a stable solution

Set i := 0.

Phase 1: while there is a blocking pair uv for (M*, p') such that uv € M* do
satisfy uv with respect to p*, (M p™*) « (M* p"); set i := i 4 1.

Phase 2: if there is a blocking pair uv for (Ml,pl) then o
satisfy uv with respect to p*, (M pi*) <« (M* p'); set i := i+ 1, and
return to Phase 1.

Return (M%) ph).

Fig. 1. The algorithm for finding a path to stability. Contrary to the algorithms of
Béal et al. [2] and Yang [15], we do not have to specify the payoff p'T!; any vector piT!
that is a payoff with respect M*** and satisfies conditions (ii)-(v) may be chosen.

To obtain a path of stability we run the algorithm displayed in Figure 1.
Recall that S*(pi*1) C S*(p?) for any solution (M?, p*) for which the algorithm
performs Phase 1 or 2. Now we will prove that whenever we satisfy a blocking
pair uv ¢ M* in Phase 2 the above relation is strict. More precisely, let (M?, p?)
be a solution after a termination of Phase 1, and let (M1, p*+1) be the solution
obtained after satisfying a blocking pair w;v; ¢ M* for (M?,p*). Then we will
show that S*(p**1) C S*(p’). We first show three claims, where we write w(M) =
> wwers W(uw) for a matching M.

Claim 1. p%, + p = p, + pi for all wv € M* and M" has mazimum weight.



We prove Claim 1 as follows. Because no uv € M* is blocking for (M?¢, p*) we
have p¥ + pi = w(uw) < p, + p! for all uv € M*. This implies that

wM*) = Y pi+ps< Y, ph+p, <w(M)
uveM* uveM*

However, because M* is a maximum weight matching, we have equality every-
where, i.e., we have p! + p! = p!, + pl, for all wv € M*, and w(M*) = w(M™).
The latter equality implies that M"* is a maximum weight matching as well.

Claim 2. pi, + pi = p%, + pi for all uv € M".

We prove Claim 2 as follows. The stability of (M*, p*) implies that p, + p! =
w(uv) < pi + pk for all uv € M*. This leads to

wM) = > pl+ph < Y ph+p <w(M”).
wvEM? wvEM?

Together with the maximality of M* that follows from Claim 1, this means that
we have equality everywhere again, so p!, + p! = p¥ + p} for all uv € M".

Claim 3. If w is unmatched in M* or M*, then pi, = p, = 0.

We prove Claim 3 as follows. Suppose that w is unmatched in M. Then p{, =0
by definition. We use Claim 2 and the fact that M* and M* are maximum weight
matchings to obtain w(M*) = w(M*) =3, v (Pl +05) =3 oers (05 +05).
By definition, w(M*) = 3 .y Py Due to these two equalities, p}, = 0. The case
when w is unmatched in M* can be proven by similar arguments. This completes
the proof of Claim 3.

We now consider the pair (u;,v;) and write u = u; and v = v;. Because uv ¢
M* is blocking for (M?,p?), and (M*,p*) is a stable solution, we deduce that
Pl +pl < w(uv) < pk + pk; note that this means that w(uv) > 0. If u and v are
both unmatched in M?, then p} = p’ = 0 by Claim 3. Then w(uv) < 0, which
is not possible. Hence, we are left to analyze two cases.

First suppose that one of u,v, say u, is unmatched in M?, whereas v is
matched by M?, say vy € M*. Because u is unmatched, p{, = p¥ = 0 by Claim 3.
Because we already deduced that pi + p! < p¥ + p?, this means that pi < p?.
The inequality p! < p’ and the equality p + p; = p;, + pj, from Claim 2 imply
that piy > py, e,y €S” (p). Because y becomes unmatched after satisfying uv
by definition, we find that p*!(y) = 0. Hence, S*(p'*t!) C S*(p*). Now suppose
that both u and v are matched in M*. Let zu € M? and vy € M. The equalities
pl + pl, = pi + p: and p! + piy = p, + p, from Claim 2, together with the
aforementioned inequality pi, 4+ p}, < pj; + p}, imply that pl + p}, > p} + p}.
Hence, p¢. > p or p; > p,- This means that x or y is in S* (p'). We may assume
without loss of generality that x € S*(p’). Because x becomes unmatched after
satisfying uv by definition, we find that p**!(x) = 0. Hence, S*(p'*!) C S*(p?)
also in this case.



Because the number of overpaid vertices decreases after each execution of
Phase 2, the algorithm terminates and the returned solution (M?,p?) is stable.
Consequently, we have shown the existence of a path to stability.

Now we set the linear upper bound for the number of steps ¢ required to
reach a stable solution. Each time we satisfy a blocking pair not in M* in Phase
2, the number of overpaid vertices decreases. Hence, we cannot satisfy more than
|S*(p?)| < % of them. Regarding the pairs of M*, after the first time we satisfy
a pair uwv € M* we may need to satisfy it again only if u or v is involved in
a blocking pair xu or uy, respectively, that is not in M™* and that is satisfied
in Phase 2. Hence, the satisfaction of a pair zu not in M™ may result that at
most two pairs in M™*, involving either = or u, can be subsequently satisfied in
Phase 1, but all the other pairs of M* satisfied in this execution of Phase 1 must
be satisfied for the first time. Therefore we have the following upper bounds:

e We satisfy at most 4 pairs not in M*.
e We satisfy at most § pairs of M™ for the first time.

o We satisfy pairs of M™ not for the first time at most 2 - § = n times.
Thus we satisfy at most £ = 5 + 5 +n = 2n pairs. This completes our proof. O

Remark. Our proof of Theorem 1 is constructive. The algorithm of Figure 1
constructs a path to stability starting in any unstable solution. Due to the linear
upper bound stated in Theorem 1, its running time is O(n?) time for weighted
graphs on n vertices, given a stable reference solution (M*, p*) which, if neces-
sary, we can compute in O(nm + n?logn) [3].

3 Blocking Pairs and Blocking Value

We start with the following result.
Theorem 2. BLOCKING PAIRS and BLOCKING VALUE are NP-complete.

Proof. Clearly, both problems are in NP. In order to prove NP-completeness,
we reduce from the INDEPENDENT SET problem. This problem takes as input
a graph GG with an integer k and is to test whether G contains an independent
set of size at least k, i.e., a set S with |S| > k such that there is no edge in G
between any two vertices of S. Garey, Johnson and Stockmeyer [9] show that
INDEPENDENT SET is already NP-complete for the class of $-regular graphs, i.e.,
graphs in which all vertices are of degree three. So we may assume that G is
3-regular. We also assume that k > 2. Let n = |V| and let V = {v1,...,v,}.
From G we construct a weighted graph G* = (V*, E*) on 2n+k(4k +3) vertices.
First, we add a set V' of n new vertices v1, ..., v,,, where we add an edge between
v; and v} for ¢ = 1,...,n. So, every v} has a unique neighbor in the resulting
graph, namely v;. Now let K be a complete graph on r = 4k + 3 vertices; note
that 7 is odd. We add k mutually vertex-disjoint copies K, ..., K* of K to the
graph constructed so far. In each copy K* we specify a vertex u; leading to a
set U = {uq,...,ur}. We then finish our construction of G* by adding an edge



Fig. 2. The graph G* and an example of a matching My, . The edges within the sub-
graph G of G* have not been drawn.

upv; for all 1 < h < k and all 1 < i < n; see Figure 2. It remains to define an
edge weighting w on G*. We let w(upv;) = % foralll<h<kandalll<i<n,
whereas we assign all other edges e of G* weight w(e) = 1.

We make the following observation that is important for the remainder of the
proof. By our construction, there exist a matching My, for each subset V3 C V
of size k that can be decomposed as My, = M{U---UMiUMyy, UMVQVZ)/, where
M, is a perfect matching of K" —wy, for h = 1,...,k, Myy, is a perfect matching
of G*[U U V4] and My,y; is a perfect matching of G*[Vo U V3] for Vo = V' \ 1}
and its set of neighbors Vy in V’. We call a matching My, as defined above a
Vi-matching. Note that V; has more than one Vi-matching, because we can pick
different perfect matchings for the decomposition of My, (except for the perfect
matching My,y; of G[Vz, V3], which is unique).

For our two NP-hardness reductions, it suffices to show that the following
three statements are equivalent.

(i) G has an independent set S of size at most k.
(ii) |B(p)| < k for some matching payoff p of G*.
(iii) b(p) < k for some matching payoff p of G*.

“(i) = (ii)” Suppose that G has an independent set S of size |S| > k. Then we
may assume without loss of generality that |S| = k, as otherwise we could just
remove some vertices from S. We pick an arbitrary S-matching Mg and define a
payoff p with respect to Mg as follows. We let p = % on K'U---UK*, whereas
welet p=1onV\Sand p=0on SUV’. Because S is an independent set and
p=1onV\S, no pair (v;,v;) is a blocking pair. This and the definition of p
ensures that B(p) = {(vi,v}) | v; € S}, which has size k.

“(ii) = (iil)” Suppose that |B(p)| < k for some matching payoff p of G*. Then

b(p) < k, because each blocking pair in B(p) can contribute at most a value of
1 to the total blocking value b(p) as the maximum value of w is 1.

“(iii) = (1)” Suppose that b(p) < k for some matching payoff p of G*. Assume
that b(p) is minimum over all matching payoffs. Let M be the associated match-
ing. We first show three useful claims.

Claim 1. For all 1 < h <k, every z € Vgn \ {un} is matched by M.



We prove Claim 1 as follows. First suppose that there exists some complete graph
K" that contains a nonempty subset D of vertices that are not equal to u; and
that are unmatched in M. Let A = Vgen \{up,UD}. We write a = |A] and 0 = |D|.
By our construction, the vertices in A can only be matched by M via matching
edges in K"[A]. By definition, p, + p,» = 1 for all 22’ € M with 2,2’ € A. This
means that ) _,p. = %oz. Moreover, p = 0 on D by definition, and 6 > 1 by
our assumption. We let F; be the set of edges with one end-vertex in A and the
other one in D. We let E5 be the set of edges with both end-vertices in D. By
using the properties of A and D, we find that k > b(p) > > __,cp (1—p.—p.r)+
Dovwep,(L=pe=pa) =03 ca(l=pa)+ 3 cp, 1= %aé—i— %6(5 —1). Recall
that § > 1. We distinguish three cases. If § = 1, thena =r—§—1 =r—2. Then
our deduction implies that k > 2o = 1(r —2), which is equivalent to r < 2k +2.
If § = 2, then @ = r — 3, and we find that k > o+ 1 = r — 2, which is equivalent
tor < k-4 2. If § > 3, then we find that k > %a+52a+5:r—1, which is
equivalent to r < k + 1. Hence, in all three cases, we find that r < 2k + 2. This
is not possible, because r = 4k + 3 > 2k + 2. We conclude that D = (). Hence,
we have proven Claim 1.

Claim 2. There exists a subset Vi C 'V such that the restriction of M to the edges
of G*[V1 U U] is a perfect matching.

We prove Claim 2 as follows. First suppose that there exists some u; that is
unmatched in M. Then p,, = 0 by definition. Let A = Vi \ {un}. Note that
|A] = r — 1 is even, because r is odd. Claim 1 tells us that the vertices of
A are matched by edges of M. By construction, these matching edges must
have both end-vertices in A. Because p, + p,, = 1 for all zz’ € M and p > 0,
this means that there are at least 3(r — 1) vertices in A, whose payoff is at
most % We consider the edges between v and those vertices and deduce that
k > b(p) > 2(r —1)(1 — & — 0), which is equivalent to » < 4k + 1. This is not
possible, because » = 4k + 3. Hence, every u;, is matched by M.

Now suppose that uj forms a matching edge of M together with some other
vertex z of K. Then M cannot cover all vertices of K", because r is odd. This
is not possible due to Claim 1. Hence, every uy, forms a matching edge of M with
some vertex v; from V. This gives us the set V3, and we have proven Claim 2.

Claimé’.pz% on U.

We prove Claim 3 as follows. Suppose that p,, < % for some 1 < h < k. By
Claim 2, up, forms a matching edge of M with some vertex v;. Then p,, +p,, =
w(upv;) = 3. Then p,, = e > 0. We modify p into a new payoff p’ with respect
to M by increasing the payoff to u; with € and decreasing the payoff of v; to
zero. Because G is 3-regular, v; has 3 neighbors in G. As in the proof of Claim 2,
there are at least %(r —1) vertices in K" —uy,, whose payoff is at most % Hence,
taking into account the other neighbors of v; in G* as well, our modification of
p decreases the total blocking value by at most (k + 4)e but at the same time
increases it by at least % (r — 1)e. Hence, b(p') > b(p) — (k + 4)e + 3(r — 1)e =
b(p) + (5(r — 1) — (k +4))e > b(p), where the latter inequality follows from the



fact that r > 4k + 2 > 2k + 5, as we assume that k& > 2. However, b(p’) > b(p)
contradicts the minimality of b(p). Hence, we have proven Claim 3.

We are now ready to argue how to find an independent set of size at least k
in G. Let V7 be the set from Claim 2. By Claim 3 and the fact that the weights
w(e) of every edge e between U and V is set to 1, we find that p = 0 on V;.
Due to Claim 2, no vertex v, with v; € V; can be matched by M. Hence, Py, =0
for every v; € V4. Because |U| = k, we find that |V1| = k. Let E{ denote the
set of edges v;v; with v; € V;. Because |V;| = k, we obtain |E}]| = k. Suppose
that ¥ contains two adjacent vertices v; and v;. Then b(p) > Zzz’eEg (1-p.—
pzr) + (1 = py; — pu;) = k + 1. This is not possible, because b(p) < k. Hence, no
two vertices in V; are adjacent. In other words, Vi is an independent set of size
|[V1| = k, as desired. This completes the proof of Theorem 2. ad

The problems RESTRICTED BLOCKING PAIRS and RESTRICTED BLOCKING
VALUE take as input a graph G, an integer k, and a matching M of G, and are
to decide whether G has a payoff p with respect to M such that |B(p)| < k or
b(p) < k, respectively.

Theorem 3. The RESTRICTED BLOCKING VALUE problem is polynomial-time
solvable, whereas the RESTRICTED BLOCKING PAIRS problem is NP-complete
even for graphs with unit edge weights.

Proof. We first consider the RESTRICTED BLOCKING VALUE problem. Let G =
(V,E) be a graph with an edge weighting w. Let M be a given matching of G.
We let Vs denote the set of vertices of G matched by M. Then we can formulate
the RESTRICTED BLOCKING VALUE problem as the linear program

(RBV)  min Y 2w

wweEE\M
s.t. Dy + Do =w(uw) (uww e M)
Pu + Do + 2up > w(uww) (uwv € E\ M)
Du > 0 (ueVy)
Du = 0 (ueV\Vy)
Zuw > 0 (weE\M)

Consequently, RESTRICTED BLOCKING VALUE can be solved in polynomial time
by the ellipsoid method [10].

We now consider the RESTRICTED BLOCKING PAIRS problem. Clearly, this
problem is in NP. In order to prove NP-completeness, we reduce from the 3-
SATISFIABILITY problem, which is NP-complete (cf. [8]).

Given an instance of 3-SATISFIABILITY with Boolean variables x4, ..., z, and
clauses C, ..., Cy,, we construct a graph G as follows (see Figure 3).
— For each i € {1,...,n}, construct adjacent vertices x;,Z; that correspond to

the literals over z;.
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— For each j € {1,...,m}, construct pairwise adjacent vertices uﬁl), u§2),u(3)

J
and pairwise adjacent vertices vél), vﬁz), v§3), then add edges ug»l)vy), u§2)v§2),
MCINC)

R
— Forje{l,...,m}, let C; = 21V 22V z3. Join uﬁl), u§»2),u§3) with the vertices
that correspond to the literals z1, zo, 23 by edges respectively.
— Construct m + 1 vertices wo, ..., wy,; for each s € {0,...,m}, join w, by
; = ; : @ @ 6 Q) (2) (3)
edges with x;, T; for i € {1,...,n} and with ugugug v v v for
jed{l,...,m}.

Finally, we define
M = {z@1 <i<nyU{u 1 <i<n1<r<3),

and k = (n+ 3m)(m + 1) + m. We prove that the formula ¢ = C1 A ... A C)p,
can be satisfied if and only if there is a payoff p for G with respect to M with
|B(p)| < k-

Fig. 3. The construction of G. For clarity, only one clause has been displayed, which
in this example is the clause C; = {x1,T;, Tn }, and moreover, the edges incident to w;
for ¢ # s have not been drawn. The edges that belong to M are shown by thick lines.

First suppose that the variables z1,...,z, are assigned values such that
¢ = true. We define p as follows.

— For s € {0,...,n}, py, =0.
— For i € {1,...,n}, ps;, = L,pz, = 01if x; = true, and p,, = 0,pz, = 1

otherwise.
— For j € {1,...,m}, let C; = 2, V 23 V z3 and choose a literal z, = true
for r € {1,2,3}; we set p » = 0,p,» = 1 and p oy = 1,p ) = 0 for
J J J J

he{l,2,30\ {r}.

It is straightforward to check that p is a payoff with respect to M. Observe that
for each s € {0,...,n} and any ab € M, exactly one of the pairs (ws, a), (ws, b)

is a blocking pair, also for each j € {1,...,m}, (v](»h), v§h/)) € B(p) for {h,h'} =
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{1,2,3} \ {r}, and all other pairs of adjacent vertices are not blocking pairs. It
follows that |B(p)| = (n +3m)(m +1) + m = k.

Now suppose that p is a payoff for G with respect to M such that |B(p)| < k.

By the definition, p,,, = 0 for s € {0,...,m}. For each ab € M, (ws,a) €
B(p) or (ws,b) € B(p), and if p, < 1 and p, < 1, then (ws,a),(ws,b) € B(p).
Since |B(p)| < (n+ 3m)(m + 1) + m, for each ab € M, either p, = 1,p, = 0 or
Pa = 0,pp = 1. We also note that exactly (n+3m)(m+ 1) blocking pairs include
the vertices wo, ..., Wp,.

For each j € {1,...,m}, if p. &y =p,» = p, =1, then p o) =p = =

J J J J J

P = 0 and (")) € B(p) for bl € {1,2,3}, h # K. Similarly, if

p(1)—]7(2)—]7<s>—Oade<1>—p<2>—p<a)—1 then (u; ", ( ))EB()
forh h’e{l 2, 3} h#1. If there areh h’e{l ,3} such that pu<h) =0 and
i

P ) = 0, then exactly one of the pairs from the set
i
1 (2 2) (3 3 1) (2 3 1) (3
{570, @ )@ w), (7, 02, @ o), @) )}

is a blocking pair. Since G' can have only k — (n + 3m)(m + 1) = m blocking
pairs of this type, we conclude that for each j € {1,...,m}, there is an index

h € {1,2,3} such that p ) = 0 and if x; or T; is adjacent to ug-h), then (x;, u;h)),
J

(T4, uéh)) are not blocking pairs.

Now for each i € {1,...,n}, we set the variable z; = true if p,, = 1 for
the vertex z;, and z; = false otherwise. Consider a clause C; = 21 V 22 V 2.
There is h € {1,2,3} such that p_ ) = = 0. Suppose that the hteral zn, = x; for

some i € {1,...,n}. The vertex ugh) is adjacent to the vertex x;, and (z;, §h)) ¢

B(p). Then p,, = 1 and the variable ; = true. If the literal z;, = T; for some
i € {1,...,n}, then the vertex ug-h) is adjacent to the vertex =; and pz, = 1, i.e.,
the variable z; = false. In both cases C; contains a literal with the value true.

It follows that ¢ = true. a

4 Future Work

We finish our paper by stating the following two open problems. What is the
computational complexity of BLOCKING PAIRS and BLOCKING VALUE restricted
to input graphs with unit edge weights?
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