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Abstract 

 

The stable roommates problem with payments has as input a graph G(E,V) with an edge 

weighting w:E→R+ and the problem is to find a stable solution. A solution is a matching M 

with a vector pϵRV that satisfies  pu+pv=w(uv) for all uvϵM and pu=0 for all u unmatched in 

M. A solution is stable if it prevents blocking pairs, i.e., pairs of adjacent vertices u and v with 

pu+pv<w(uv). By pinpointing a relationship to the accessibility of the coalition structure core of 

matching games, we give a simple constructive proof for showing that every yes-instance of the 

stable roommates problem with payments allows a path of linear length that starts in an 

arbitrary unstable solution and that ends in a stable solution. This result generalizes a result of 

Chen, Fujishige and Yang for bipartite instances to general instances. We also show that the 

problems Blocking Pairs and Blocking Value, which are to find a solution with a minimum 

number of blocking pairs or a minimum total blocking value, respectively, are NP-complete. 

Finally, we prove that the first problem is NP-complete also when a matching is prescribed, 

whereas this variant of the second problem becomes polynomial-time solvable. 
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Összefoglaló 
 
 
A stabil szobatárs probléma kifizetéses változatában a bemenet egy G(E,V) gráf w:E→R+ 

élsúlyokkal és a feladat, hogy találjunk egy stabil megoldást. Egy megoldás egy M párosításból 

és egy pϵRV vektorból áll, amelyre fennáll, hogy pu+pv=w(uv) minden uvϵM-re és pu=0 minden 

párosítatlan u pontra. A megoldás stabil, ha nem található rá blokkoló pár, amely egy olyan 

szomszédos u és v pontpárt jelent, melyre pu+pv<w(uv). A párosítási játék koalíciós 

strukturális magjának elérhetőségére vonatkozó kapcsolatra alapozva konstruktív bizonyítást 

adunk a következő tételre. Ha adott egy megoldható stabil párosítás probléma kifizetéses 

verziója, akkor tetszőleges megoldásból indulva lineáris lépésben mindig el tudunk jutni egy 

stabil megoldáshoz blokkoló párok kielégítésével. Ez Chen, Fujishige és Yang páros gráfokra 

vonatkozó tételét általánosítja. Azt is megmutatjuk, hogy a blokkoló élek számának és a 

blokkoló érték minimalizálásának feladatai NP-teljesek. Végül belátjuk, hogy az első probléma 

akkor is NP-teljes, ha a párosítás előre adott, míg az utóbbi probléma ugyanezen verziója 

polinom időben megoldható.   

 
Tárgyszavak: szobatárs probléma; párosítás játék; kooperatív játékelmélet; 

bonyolultságelmélet 
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Abstract. The stable roommates problem with payments has as input
a graph G = (V,E) with an edge weighting w : E → R+ and the problem
is to find a stable solution. A solution is a matching M with a vector
p ∈ RV

+ that satisfies pu + pv = w(uv) for all uv ∈M and pu = 0 for all
u unmatched in M . A solution is stable if it prevents blocking pairs, i.e.,
pairs of adjacent vertices u and v with pu+pv < w(uv). By pinpointing a
relationship to the accessibility of the coalition structure core of matching
games, we give a simple constructive proof for showing that every yes-
instance of the stable roommates problem with payments allows a path of
linear length that starts in an arbitrary unstable solution and that ends
in a stable solution. This result generalizes a result of Chen, Fujishige
and Yang for bipartite instances to general instances. We also show that
the problems Blocking Pairs and Blocking Value, which are to find
a solution with a minimum number of blocking pairs or a minimum total
blocking value, respectively, are NP-complete. Finally, we prove that the
first problem is NP-complete also when a matching is prescribed, whereas
this variant of the second problem becomes polynomial-time solvable.

1 Introduction

Consider a group of tennis players participating in a doubles tennis tournament.
Each two players estimate the expected prize money they could win together by
forming a pair in the tournament. Moreover, each player can negotiate his share
of the prize money with his chosen partner in order to maximize his own prize
money. Can the players be matched together such that no two players have an
incentive to leave the matching in order to form a pair together? This example

⋆ ⋆ ⋆ Supported by the Hungarian Academy of Sciences under its Momemtum Programme
(LD-004/2010).

† Supported by EPSRC Grant EP/G043434/1.



has been given by Eriksson and Karlander [6] to introduce the stable roommates
problem with payments. This problem generalises the stable marriage problem
with payments [14] and can be modeled by a weighted graph G = (V,E), i.e.,
that has an edge weighting w : E → R+. A vector p ∈ RV with pu ≥ 0 for all
u ∈ V is said to be a matching payoff if there exists a matching M in G, such
that pu + pv = w(uv) for all uv ∈ M , and pu = 0 for each u that is not incident
to an edge in M . We then say that p is a payoff with respect to M , and we call
the pair (M,p) a matching with payoffs. A pair of adjacent vertices (u, v) is a
blocking pair of p ∈ RV if pu+ pv < w(uv), and their blocking value with respect
to p is ep(u, v)

+ = max{0, w(uv)− (pu + pv)}, which expresses to which extent
(u, v) is a blocking pair. We define the set of blocking pairs of a vector p ∈ RV as
B(p) = {(u, v) | pu + pv < w(uv)}, and we define the total blocking value of p as
b(p) =

∑
uv∈E ep(u, v)

+. The problem Stable Roommates with Payments
is to test whether a weighted graph allows a stable solution, i.e., a matching with
payoffs (M,p) such that B(p) = ∅, or equivalently, b(p) = 0. This problem it
well known to be polynomial-time solvable (cf. [6]); recently, an O(nm+n2 log n)
time algorithm for weighted graphs on n vertices and m edges has been given [3].

We consider two natural questions in our paper:

1. Can we gradually transform an unstable solution into a stable solution as-
suming that a stable solution exists?

2. Can we find solutions for no-instances that are “as stable as possible”?

Question 1 is of importance, as it will give us insight into the coalition formation
process. A sequence of solutions starting from an unstable one and ending in a
stable one is called a path to stability. Question 2 is relevant when we consider
no-instances of Stable Roommates with Payments. In order to answer it, we
generalize this problem in two different ways leading to the following two decision
problems. Given a weighted graph G and an integer k ≥ 0, the Blocking Pairs
problem is to test whether G allows a matching payoff p with |B(p)| ≤ k, and
the Blocking Value problem is to test whether G allows a matching payoff p
with b(p) ≤ k.

Questions 1 and 2 have been studied in two closely related settings that are
well known and formed a motivation for our study. The first related setting is
similar to ours except that payments are not allowed. Instead, each vertex u in
an (unweighted) graph G(V,E) has a linear order on its neighbors expressing
a certain preference. Then two adjacent vertices u and v form a blocking pair
regarding a matching M if either u is not matched in M or else u prefers v to
its partner in M , and simultaneously, the same holds for v. This leads to the
widely studied problem Stable Roommates introduced by Gale and Shapley
[7]. In this setting, the results are as follows. Answering a question by Knuth
[12], Roth and Vande Vate [13] showed the existence of a path to stability for
any yes-instance provided that the instance is bipartite. Later, their result was
generalized by Diamantoudi et al. [5] to be valid for general instances. Abra-
ham, Biró and Manlove [1] showed that the problem of finding a matching with
a minimum number of blocking pairs is NP-complete; note that the problem
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Blocking Value cannot be translated to this setting, due to the absence of
cardinal utilities.

The second related setting originates from cooperative game theory. A coop-
erative game with transferable utilities (TU-game) is a pair (N, v), where N is
a set of n players and a value function v : 2N → R with v(∅) = 0 defined for
every coalition S, which is a subset of N . In a matching game (N, v), the set N
of players is the vertex set of weighted graph G, and the value of a coalition S is
v(S) =

∑
e∈M w(e), where M is a maximum weight matching in the subgraph of

G induced by S. The strong relationship between the two settings stems from the
fact that finding a core allocation, i.e., a vector x ∈ RN with

∑
u∈N xu = v(N)

and
∑

u∈S xu ≥ v(S) for all S ⊆ N is equivalent to solving the Stable Room-
mates with Payments (cf. [6]). The algorithms of Béal et al. [2] and Yang
[15] applied to an n-player matching game with a nonempty core find a path to
stability with length at most (n2 +4n)/4 and 2n− 1, respectively. For matching
games, the problems Blocking Pairs and Blocking Value are formulated as
the problems that are to test whether a matching game (N,E) allows an alloca-
tion x with |B(x)| ≤ k, or b(x) ≤ k, respectively, for some given integer k. Biró,
Kern and Paulusma [3] showed that the first problem is NP-complete and that
the second is polynomial-time solvable by formulating it as a linear program.

Our Results. In Section 2, we answer Question 1 by showing that any unsta-
ble solution for a weighted n-vertex graph G that is a yes-instance of Stable
Roommates with Payments allows a path to stability of length at most 2n.
This generalizes a result of Chen, Fujishige and Yang [4], who show the exis-
tence of a path to stability for the aforementioned stable marriage problem with
payments, which corresponds to the case when G is bipartite. In Section 3 we
answer Question 2 by proving that Blocking Pairs and Blocking Value
are NP-complete. The latter result is somewhat surprising, as the corresponding
problem is polynomial-time solvable for matching games; we refer to Table 1 for
a survey. In addition, we show that Blocking Value does become polynomial-
time solvable if the desired matching payoff is to be with respect to some specified
matching M that is part of the input, whereas this variant of Blocking Pairs
turns out to be NP-complete.

SR SRwP MG

Path to Stability Yes Yes∗ Yes

Blocking Pairs NP-complete NP-complete∗ NP-complete

Blocking Value n/a NP-complete∗ P

Table 1. A comparison of the results for the existence of a path to stability and
the problems Blocking Pairs and Blocking Value in the three different settings
of stable roommates (SR), stable roommates with payments (SRwP) and matching
games (MG). The three results marked by a ∗ are the new results shown in this paper.
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2 Paths to stability

We first give a useful lemma, which immediately follows from the aforemen-
tioned fact that finding a core allocation in a matching game (N, v) defined on
a weighted graph G = (N,E) is equivalent to finding a stable solution for G.

Lemma 1 ([6]). Let G be a weighted graph that forms a yes-instance of Stable
Roommates with Payments. Then G allows a stable solution (M∗, p∗) where
M∗ is a maximum weight matching of G.

Let G = (V,E) be a graph and M be a matching. If uv ∈ M , then we say that
u and v are partners in M , denoted M(u) = v and M(v) = u. If u is unmatched
in M , then we let M(u) = u. Let uv be a blocking pair for some payoff p with
respect to some matching M ; note that uv /∈ M by definition. Let p′ be a payoff
with respect to a matching M ′. We say that (M ′, p′) is obtained from (M,p) by
satisfying blocking pair (u, v) if the following four conditions hold:

(i) uv ∈ M ′;
(ii) pu ≤ p′u and pv ≤ p′v;
(iii) if M(u) ̸= u then let M(u) be unmatched in M ′ (hence p′M(u) = 0), and

if M(v) ̸= v then let M(v) be unmatched in M ′ (hence p′M(v) = 0);

(iv) M ′(z) = M(z) and p′(z) = p(z) for every z ∈ V \ {u, v,M(u),M(v)}.

That is, the players of a blocking pair become matched to each other by leaving
their former partners unmatched (if there were any) and they share the extra
utility coming from their cooperation in such a way that neither of them gets
worse off (and by the definition of a blocking pair, one of them strictly improves).

We say that (M ′, p′) is obtained from (M,p) by satisfying blocking pair
(u, v) with respect to a payoff p∗ of some stable solution (M∗, p∗) that is called a
reference solution, if in addition to conditions (i)–(iv) also the following condition
is satisfied:

(v) if pu ≤ p∗u then p′u ≤ p∗u, and if pv ≤ p∗v then p′v ≤ p∗v.

We define S∗(p) = {u ∈ V (G) : pu > p∗u} to be the set of overpaid vertices
in (M,p) with respect to (M∗, p∗). We note that when (M ′, p′) is obtained from
(M,p) by satisfying a blocking pair with respect to p∗ then S∗(p′) ⊆ S∗(p).

Our next result is based on the work of Kóczy and Lauwers [11] on the
so-called accessibility of the coalition structure core. Their result implies the
existence of a path to stability for any TU-game with a nonempty core. In this
setting, a path to stability is a sequence of gradual changes that transform a
non-core allocation to a core allocation. Recently, Béal et al. [2] and Yang [15]
built on the work of Kóczy and Lauwers [11] in order to show the accessibility of
the coalition structure core in quadratic time. In particular, Yang [15] obtained
a linear upper bound on the length of a path to stability for any TU-game with
a nonempty core. We can use their proof techniques [2, 15] for our setting. Our
arguments are slightly different though, because for matching games (N, v) every
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coalition S ⊆ N may be blocking instead of only pairs {u, v} as in our setting.
Moreover, the arguments of Yang [15] for restricting the path length cannot be
translated to obtain our linear upper bound. By pinpointing the connection to
the setting of cooperative games, we are not only able to generalize the cor-
responding result of Chen, Fujishige and Yang [4] for the existence of a path
to stability for bipartite instances (which are always yes-instances) to general
yes-instances, but we could also give a simpler proof of this result.

Theorem 1. Let G be a weighed n-vertex graph that forms a yes-instance of
Stable Roommates with Payments; Let (M0, p0) be a matching with payoffs.
Then there exists a path to stability of length at most 2n that starts in (M0, p0).

Proof. Let G be a weighed n-vertex graph that forms a yes-instance of Stable
Roommates with Payments; we also call such a graph G stable. Let (M0, p0)
be a matching with payoffs. We fix a stable reference solution (M∗, p∗), where
we may assume that M∗ is a maximum weight matching due to Lemma 1. Note
that |M∗| ≤ n

2 and |M0| ≤ n
2 . Moreover, |S∗(p0)| ≤ n

2 , because the vertices u
and v of a pair uv ∈ M0 cannot both belong to S∗(p0), as otherwise p0u > p∗u,
p0v > p∗v and w(uv) = p0u + p0v would imply that uv is blocking for (M∗, p∗).

Input: a matching with payoffs (M0, p0) in a weighted stable graph G
Output: a stable solution

Set i := 0.

Phase 1: while there is a blocking pair uv for (M i, pi) such that uv ∈M∗ do
satisfy uv with respect to p∗, (M i+1, pi+1)← (M i, pi); set i := i+ 1.

Phase 2: if there is a blocking pair uv for (M i, pi) then
satisfy uv with respect to p∗, (M i+1, pi+1)← (M i, pi); set i := i+ 1, and
return to Phase 1.

Return (M i, pi).

Fig. 1. The algorithm for finding a path to stability. Contrary to the algorithms of
Béal et al. [2] and Yang [15], we do not have to specify the payoff pi+1; any vector pi+1

that is a payoff with respect M i+1 and satisfies conditions (ii)-(v) may be chosen.

To obtain a path of stability we run the algorithm displayed in Figure 1.
Recall that S∗(pi+1) ⊆ S∗(pi) for any solution (M i, pi) for which the algorithm
performs Phase 1 or 2. Now we will prove that whenever we satisfy a blocking
pair uv /∈ M∗ in Phase 2 the above relation is strict. More precisely, let (M i, pi)
be a solution after a termination of Phase 1, and let (M i+1, pi+1) be the solution
obtained after satisfying a blocking pair uivi /∈ M∗ for (M i, pi). Then we will
show that S∗(pi+1) ⊂ S∗(pi). We first show three claims, where we write w(M) =∑

uv∈M w(uv) for a matching M .

Claim 1. p∗u + p∗v = piu + piv for all uv ∈ M∗ and M i has maximum weight.
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We prove Claim 1 as follows. Because no uv ∈ M∗ is blocking for (M i, pi) we
have p∗u + p∗v = w(uv) ≤ piu + piv for all uv ∈ M∗. This implies that

w(M∗) =
∑

uv∈M∗

p∗u + p∗v ≤
∑

uv∈M∗

piu + piv ≤ w(M i)

However, because M∗ is a maximum weight matching, we have equality every-
where, i.e., we have p∗u + p∗v = piu + piv for all uv ∈ M∗, and w(M i) = w(M∗).
The latter equality implies that M i is a maximum weight matching as well.

Claim 2. piu + piv = p∗u + p∗v for all uv ∈ M i.

We prove Claim 2 as follows. The stability of (M∗, p∗) implies that piu + piv =
w(uv) ≤ p∗u + p∗v for all uv ∈ M i. This leads to

w(M i) =
∑

uv∈Mi

piu + piv ≤
∑

uv∈Mi

p∗u + p∗v ≤ w(M∗).

Together with the maximality of M i that follows from Claim 1, this means that
we have equality everywhere again, so piu + piv = p∗u + p∗v for all uv ∈ M i.

Claim 3. If w is unmatched in M i or M∗, then piw = p∗w = 0.

We prove Claim 3 as follows. Suppose that w is unmatched in M i. Then piw = 0
by definition. We use Claim 2 and the fact that M∗ and M i are maximum weight
matchings to obtain w(M∗) = w(M i) =

∑
uv∈Mi(piu + piv) =

∑
uv∈Mi(p∗u + p∗v).

By definition, w(M∗) =
∑

u∈V p∗u. Due to these two equalities, p∗w = 0. The case
when w is unmatched in M∗ can be proven by similar arguments. This completes
the proof of Claim 3.

We now consider the pair (ui, vi) and write u = ui and v = vi. Because uv /∈
M∗ is blocking for (M i, pi), and (M∗, p∗) is a stable solution, we deduce that
piu + piv < w(uv) ≤ p∗u + p∗v; note that this means that w(uv) > 0. If u and v are
both unmatched in M i, then p∗u = p∗v = 0 by Claim 3. Then w(uv) ≤ 0, which
is not possible. Hence, we are left to analyze two cases.

First suppose that one of u, v, say u, is unmatched in M i, whereas v is
matched by M i, say vy ∈ M i. Because u is unmatched, piu = p∗u = 0 by Claim 3.
Because we already deduced that piu + piv < p∗u + p∗v, this means that piv < p∗v.
The inequality piv < p∗v and the equality piv + piy = p∗v + p∗y from Claim 2 imply

that piy > p∗y, i.e., y ∈ S∗(pi). Because y becomes unmatched after satisfying uv

by definition, we find that pi+1(y) = 0. Hence, S∗(pi+1) ⊂ S∗(pi). Now suppose
that both u and v are matched in M i. Let xu ∈ M i and vy ∈ M i. The equalities
pix + piu = p∗x + p∗u and piv + piy = p∗v + p∗y from Claim 2, together with the

aforementioned inequality piu + piv < p∗u + p∗v, imply that pix + piy > p∗x + p∗y.

Hence, pix > p∗x or piy > p∗y. This means that x or y is in S∗(pi). We may assume

without loss of generality that x ∈ S∗(pi). Because x becomes unmatched after
satisfying uv by definition, we find that pi+1(x) = 0. Hence, S∗(pi+1) ⊂ S∗(pi)
also in this case.
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Because the number of overpaid vertices decreases after each execution of
Phase 2, the algorithm terminates and the returned solution (M ℓ, pℓ) is stable.
Consequently, we have shown the existence of a path to stability.

Now we set the linear upper bound for the number of steps ℓ required to
reach a stable solution. Each time we satisfy a blocking pair not in M∗ in Phase
2, the number of overpaid vertices decreases. Hence, we cannot satisfy more than
|S∗(p0)| ≤ n

2 of them. Regarding the pairs of M∗, after the first time we satisfy
a pair uv ∈ M∗ we may need to satisfy it again only if u or v is involved in
a blocking pair xu or uy, respectively, that is not in M∗ and that is satisfied
in Phase 2. Hence, the satisfaction of a pair xu not in M∗ may result that at
most two pairs in M∗, involving either x or u, can be subsequently satisfied in
Phase 1, but all the other pairs of M∗ satisfied in this execution of Phase 1 must
be satisfied for the first time. Therefore we have the following upper bounds:

• We satisfy at most n
2 pairs not in M∗.

• We satisfy at most n
2 pairs of M∗ for the first time.

• We satisfy pairs of M∗ not for the first time at most 2 · n
2 = n times.

Thus we satisfy at most ℓ = n
2 +

n
2 +n = 2n pairs. This completes our proof. ⊓⊔

Remark. Our proof of Theorem 1 is constructive. The algorithm of Figure 1
constructs a path to stability starting in any unstable solution. Due to the linear
upper bound stated in Theorem 1, its running time is O(n2) time for weighted
graphs on n vertices, given a stable reference solution (M∗, p∗) which, if neces-
sary, we can compute in O(nm+ n2 log n) [3].

3 Blocking Pairs and Blocking Value

We start with the following result.

Theorem 2. Blocking Pairs and Blocking Value are NP-complete.

Proof. Clearly, both problems are in NP. In order to prove NP-completeness,
we reduce from the Independent Set problem. This problem takes as input
a graph G with an integer k and is to test whether G contains an independent
set of size at least k, i.e., a set S with |S| ≥ k such that there is no edge in G
between any two vertices of S. Garey, Johnson and Stockmeyer [9] show that
Independent Set is already NP-complete for the class of 3-regular graphs, i.e.,
graphs in which all vertices are of degree three. So we may assume that G is
3-regular. We also assume that k ≥ 2. Let n = |V | and let V = {v1, . . . , vn}.
From G we construct a weighted graph G∗ = (V ∗, E∗) on 2n+k(4k+3) vertices.
First, we add a set V ′ of n new vertices v′1, . . . , v

′
n, where we add an edge between

vi and v′i for i = 1, . . . , n. So, every v′i has a unique neighbor in the resulting
graph, namely vi. Now let K be a complete graph on r = 4k + 3 vertices; note
that r is odd. We add k mutually vertex-disjoint copies K1, . . . ,Kk of K to the
graph constructed so far. In each copy Ki we specify a vertex ui leading to a
set U = {u1, . . . , uk}. We then finish our construction of G∗ by adding an edge
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v1

v′1

G vn

v′n

G∗ MV1

V1

K1 Kk
u1 uk

Fig. 2. The graph G∗ and an example of a matching MV1 . The edges within the sub-
graph G of G∗ have not been drawn.

uhvi for all 1 ≤ h ≤ k and all 1 ≤ i ≤ n; see Figure 2. It remains to define an
edge weighting w on G∗. We let w(uhvi) =

1
2 for all 1 ≤ h ≤ k and all 1 ≤ i ≤ n,

whereas we assign all other edges e of G∗ weight w(e) = 1.
We make the following observation that is important for the remainder of the

proof. By our construction, there exist a matching MV1
for each subset V1 ⊆ V

of size k that can be decomposed as MV1 = M1∪· · ·∪Mk∪MUV1 ∪MV2V ′
2
, where

Mh is a perfect matching of Kh−uh for h = 1, . . . , k, MUV1 is a perfect matching
of G∗[U ∪ V1] and MV2V ′

2
is a perfect matching of G∗[V2 ∪ V ′

2 ] for V2 = V \ V1

and its set of neighbors V ′
2 in V ′. We call a matching MV1 as defined above a

V1-matching. Note that V1 has more than one V1-matching, because we can pick
different perfect matchings for the decomposition of MV1 (except for the perfect
matching MV2V ′

2
of G[V2, V

′
2 ], which is unique).

For our two NP-hardness reductions, it suffices to show that the following
three statements are equivalent.

(i) G has an independent set S of size at most k.
(ii) |B(p)| ≤ k for some matching payoff p of G∗.
(iii) b(p) ≤ k for some matching payoff p of G∗.

“(i) ⇒ (ii)” Suppose that G has an independent set S of size |S| ≥ k. Then we
may assume without loss of generality that |S| = k, as otherwise we could just
remove some vertices from S. We pick an arbitrary S-matching MS and define a
payoff p with respect to MS as follows. We let p ≡ 1

2 on K1 ∪ · · · ∪Kk, whereas
we let p ≡ 1 on V \S and p ≡ 0 on S ∪V ′. Because S is an independent set and
p ≡ 1 on V \ S, no pair (vi, vj) is a blocking pair. This and the definition of p
ensures that B(p) = {(vi, v′i) | vi ∈ S}, which has size k.

“(ii) ⇒ (iii)” Suppose that |B(p)| ≤ k for some matching payoff p of G∗. Then
b(p) ≤ k, because each blocking pair in B(p) can contribute at most a value of
1 to the total blocking value b(p) as the maximum value of w is 1.

“(iii) ⇒ (i)” Suppose that b(p) ≤ k for some matching payoff p of G∗. Assume
that b(p) is minimum over all matching payoffs. Let M be the associated match-
ing. We first show three useful claims.

Claim 1. For all 1 ≤ h ≤ k, every z ∈ VKh \ {uh} is matched by M .
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We prove Claim 1 as follows. First suppose that there exists some complete graph
Kh that contains a nonempty subset D of vertices that are not equal to uh and
that are unmatched inM . Let A = VKh\{uh∪D}. We write α = |A| and δ = |D|.
By our construction, the vertices in A can only be matched by M via matching
edges in Kh[A]. By definition, pz + pz′ = 1 for all zz′ ∈ M with z, z′ ∈ A. This
means that

∑
z∈A pz = 1

2α. Moreover, p ≡ 0 on D by definition, and δ ≥ 1 by
our assumption. We let E1 be the set of edges with one end-vertex in A and the
other one in D. We let E2 be the set of edges with both end-vertices in D. By
using the properties of A and D, we find that k ≥ b(p) ≥

∑
zz′∈E1

(1−pz−pz′)+∑
zz′∈E2

(1− pz − pz′) = δ
∑

z∈A(1− pz) +
∑

zz′∈E2
1 = 1

2αδ+
1
2δ(δ− 1). Recall

that δ ≥ 1. We distinguish three cases. If δ = 1, then α = r−δ−1 = r−2. Then
our deduction implies that k ≥ 1

2α = 1
2 (r−2), which is equivalent to r ≤ 2k+2.

If δ = 2, then α = r− 3, and we find that k ≥ α+1 = r− 2, which is equivalent
to r ≤ k + 2. If δ ≥ 3, then we find that k ≥ 3

2α + δ ≥ α + δ = r − 1, which is
equivalent to r ≤ k + 1. Hence, in all three cases, we find that r ≤ 2k + 2. This
is not possible, because r = 4k + 3 > 2k + 2. We conclude that D = ∅. Hence,
we have proven Claim 1.

Claim 2. There exists a subset V1 ⊆ V such that the restriction of M to the edges
of G∗[V1 ∪ U ] is a perfect matching.

We prove Claim 2 as follows. First suppose that there exists some uh that is
unmatched in M . Then puh

= 0 by definition. Let A = VKh \ {uh}. Note that
|A| = r − 1 is even, because r is odd. Claim 1 tells us that the vertices of
A are matched by edges of M . By construction, these matching edges must
have both end-vertices in A. Because pz + pz′ = 1 for all zz′ ∈ M and p ≥ 0,
this means that there are at least 1

2 (r − 1) vertices in A, whose payoff is at
most 1

2 . We consider the edges between v and those vertices and deduce that
k ≥ b(p) ≥ 1

2 (r − 1)(1 − 1
2 − 0), which is equivalent to r ≤ 4k + 1. This is not

possible, because r = 4k + 3. Hence, every uh is matched by M .

Now suppose that uh forms a matching edge of M together with some other
vertex z of Kh. Then M cannot cover all vertices of Kh, because r is odd. This
is not possible due to Claim 1. Hence, every uh forms a matching edge of M with
some vertex vi from V . This gives us the set V1, and we have proven Claim 2.

Claim 3. p ≡ 1
2 on U .

We prove Claim 3 as follows. Suppose that puh
< 1

2 for some 1 ≤ h ≤ k. By
Claim 2, uh forms a matching edge of M with some vertex vi. Then puh

+ pvi =
w(uhvi) =

1
2 . Then pvi = ϵ > 0. We modify p into a new payoff p′ with respect

to M by increasing the payoff to uh with ϵ and decreasing the payoff of vi to
zero. Because G is 3-regular, vi has 3 neighbors in G. As in the proof of Claim 2,
there are at least 1

2 (r−1) vertices in Kh−uh, whose payoff is at most 1
2 . Hence,

taking into account the other neighbors of vi in G∗ as well, our modification of
p decreases the total blocking value by at most (k + 4)ϵ but at the same time
increases it by at least 1

2 (r − 1)ϵ. Hence, b(p′) ≥ b(p) − (k + 4)ϵ + 1
2 (r − 1)ϵ =

b(p) + ( 12 (r − 1)− (k + 4))ϵ > b(p), where the latter inequality follows from the

9



fact that r ≥ 4k + 2 ≥ 2k + 5, as we assume that k ≥ 2. However, b(p′) > b(p)
contradicts the minimality of b(p). Hence, we have proven Claim 3.

We are now ready to argue how to find an independent set of size at least k
in G. Let V1 be the set from Claim 2. By Claim 3 and the fact that the weights
w(e) of every edge e between U and V is set to 1

2 , we find that p ≡ 0 on V1.
Due to Claim 2, no vertex v′i with vi ∈ V1 can be matched by M . Hence, pv′

i
= 0

for every vi ∈ V1. Because |U | = k, we find that |V1| = k. Let E′
1 denote the

set of edges viv
′
i with vi ∈ V1. Because |V1| = k, we obtain |E′

1| = k. Suppose
that V1 contains two adjacent vertices vi and vj . Then b(p) ≥

∑
zz′∈E′

1
(1− pz −

pz′) + (1− pvi − pvj ) = k + 1. This is not possible, because b(p) ≤ k. Hence, no
two vertices in V1 are adjacent. In other words, V1 is an independent set of size
|V1| = k, as desired. This completes the proof of Theorem 2. ⊓⊔

The problems Restricted Blocking Pairs and Restricted Blocking
Value take as input a graph G, an integer k, and a matching M of G, and are
to decide whether G has a payoff p with respect to M such that |B(p)| ≤ k or
b(p) ≤ k, respectively.

Theorem 3. The Restricted Blocking Value problem is polynomial-time
solvable, whereas the Restricted Blocking Pairs problem is NP-complete
even for graphs with unit edge weights.

Proof. We first consider the Restricted Blocking Value problem. Let G =
(V,E) be a graph with an edge weighting w. Let M be a given matching of G.
We let VM denote the set of vertices of G matched by M . Then we can formulate
the Restricted Blocking Value problem as the linear program

(RBV) min
∑

uv∈E\M

zuv

s.t. pu + pv = w(uv) (uv ∈ M)
pu + pv + zuv ≥ w(uv) (uv ∈ E \M)

pu ≥ 0 (u ∈ VM )
pu = 0 (u ∈ V \ VM )
zuv ≥ 0 (uv ∈ E \M)

Consequently, Restricted Blocking Value can be solved in polynomial time
by the ellipsoid method [10].

We now consider the Restricted Blocking Pairs problem. Clearly, this
problem is in NP. In order to prove NP-completeness, we reduce from the 3-
Satisfiability problem, which is NP-complete (cf. [8]).

Given an instance of 3-Satisfiability with Boolean variables x1, . . . , xn and
clauses C1, . . . , Cm, we construct a graph G as follows (see Figure 3).

– For each i ∈ {1, . . . , n}, construct adjacent vertices xi, xi that correspond to
the literals over xi.
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– For each j ∈ {1, . . . ,m}, construct pairwise adjacent vertices u
(1)
j , u

(2)
j , u

(3)
j

and pairwise adjacent vertices v
(1)
j , v

(2)
j , v

(3)
j , then add edges u

(1)
j v

(1)
j , u

(2)
j v

(2)
j ,

u
(3)
j v

(3)
j .

– For j ∈ {1, . . . ,m}, let Cj = z1∨z2∨z3. Join u
(1)
j , u

(2)
j , u

(3)
j with the vertices

that correspond to the literals z1, z2, z3 by edges respectively.
– Construct m + 1 vertices w0, . . . , wm; for each s ∈ {0, . . . ,m}, join ws by

edges with xi, xi for i ∈ {1, . . . , n} and with u
(1)
j , u

(2)
j , u

(3)
j , v

(1)
j , v

(2)
j , v

(3)
j for

j ∈ {1, . . . ,m}.

Finally, we define

M = {xixi|1 ≤ i ≤ n} ∪ {u(r)
j v

(r)
j |1 ≤ i ≤ n, 1 ≤ r ≤ 3},

and k = (n + 3m)(m + 1) + m. We prove that the formula ϕ = C1 ∧ . . . ∧ Cm

can be satisfied if and only if there is a payoff p for G with respect to M with
|B(p)| ≤ k.

x1 x1 xi xi xn xn
w0

ws

wm

u
(1)
j

v
(1)
j

u
(2)
j

v
(3)
j

v
(2)
j

u
(3)
j

Fig. 3. The construction of G. For clarity, only one clause has been displayed, which
in this example is the clause Cj = {x1, xi, xn}, and moreover, the edges incident to wi

for i ̸= s have not been drawn. The edges that belong to M are shown by thick lines.

First suppose that the variables x1, . . . , xn are assigned values such that
ϕ = true. We define p as follows.

– For s ∈ {0, . . . , n}, pws = 0.
– For i ∈ {1, . . . , n}, pxi = 1, pxi = 0 if xi = true, and pxi = 0, pxi = 1

otherwise.
– For j ∈ {1, . . . ,m}, let Cj = z1 ∨ z2 ∨ z3 and choose a literal zr = true

for r ∈ {1, 2, 3}; we set p
u
(r)
j

= 0, p
v
(r)
j

= 1 and p
u
(h)
j

= 1, p
v
(h)
j

= 0 for

h ∈ {1, 2, 3} \ {r}.

It is straightforward to check that p is a payoff with respect to M . Observe that
for each s ∈ {0, . . . , n} and any ab ∈ M , exactly one of the pairs (ws, a), (ws, b)

is a blocking pair, also for each j ∈ {1, . . . ,m}, (v(h)j , v
(h′)
j ) ∈ B(p) for {h, h′} =

11



{1, 2, 3} \ {r}, and all other pairs of adjacent vertices are not blocking pairs. It
follows that |B(p)| = (n+ 3m)(m+ 1) +m = k.

Now suppose that p is a payoff for G with respect to M such that |B(p)| ≤ k.
By the definition, pws = 0 for s ∈ {0, . . . ,m}. For each ab ∈ M , (ws, a) ∈

B(p) or (ws, b) ∈ B(p), and if pa < 1 and pb < 1, then (ws, a), (ws, b) ∈ B(p).
Since |B(p)| ≤ (n+ 3m)(m+ 1) +m, for each ab ∈ M , either pa = 1, pb = 0 or
pa = 0, pb = 1. We also note that exactly (n+3m)(m+1) blocking pairs include
the vertices w0, . . . , wm.

For each j ∈ {1, . . . ,m}, if p
u
(1)
j

= p
u
(2)
j

= p
u
(3)
j

= 1, then p
v
(1)
j

= p
v
(2)
j

=

p
v
(3)
j

= 0 and (v
(h)
j , v

(h′)
j ) ∈ B(p) for h, h′ ∈ {1, 2, 3}, h ̸= h′. Similarly, if

p
u
(1)
j

= p
u
(2)
j

= p
u
(3)
j

= 0 and p
v
(1)
j

= p
v
(2)
j

= p
v
(3)
j

= 1, then (u
(h)
j , u

(h′)
j ) ∈ B(p)

for h, h′ ∈ {1, 2, 3}, h ̸= h′. If there are h, h′ ∈ {1, 2, 3} such that p
u
(h)
j

= 0 and

p
v
(h′)
j

= 0, then exactly one of the pairs from the set

{(u(1)
j , u

(2)
j ), (u

(2)
j , u

(3)
j )(u

(1)
j , u

(3)
j ), (v

(1)
j , v

(2)
j ), (v

(2)
j , v

(3)
j ), (v

(1)
j , v

(3)
j )}

is a blocking pair. Since G can have only k − (n + 3m)(m + 1) = m blocking
pairs of this type, we conclude that for each j ∈ {1, . . . ,m}, there is an index

h ∈ {1, 2, 3} such that p
u
(h)
j

= 0 and if xi or xi is adjacent to u
(h)
j , then (xi, u

(h)
j ),

(xi, u
(h)
j ) are not blocking pairs.

Now for each i ∈ {1, . . . , n}, we set the variable xi = true if pxi = 1 for
the vertex xi, and xi = false otherwise. Consider a clause Cj = z1 ∨ z2 ∨ z3.
There is h ∈ {1, 2, 3} such that p

u
(h)
j

= 0. Suppose that the literal zh = xi for

some i ∈ {1, . . . , n}. The vertex u
(h)
j is adjacent to the vertex xi, and (xi, u

(h)
j ) /∈

B(p). Then pxi = 1 and the variable xi = true. If the literal zh = xi for some

i ∈ {1, . . . , n}, then the vertex u
(h)
j is adjacent to the vertex xi and pxi = 1, i.e.,

the variable xi = false. In both cases Cj contains a literal with the value true.
It follows that ϕ = true. ⊓⊔

4 Future Work

We finish our paper by stating the following two open problems. What is the
computational complexity of Blocking Pairs and Blocking Value restricted
to input graphs with unit edge weights?
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