All about priorities (no school choice under the presence of bad schools)

C.Calsamiglia, A.Miralles

UAB

October 19, 2011

C.Calsamiglia, A.Miralles (UAB)

• Or how to assign children to public schools, meeting incentive-efficiency goals while respecting priorities

Is that the case?

- Or how to assign children to public schools, meeting incentive-efficiency goals while respecting priorities
- Is that the case?

- BM and DA are by far the two most popular mechanisms
- ...although other mechanisms (TTC, Pseudomarkets) have been theoretically proposed
- A long-lasting debate between BM and DA
- However, we show that these two mechanisms may not differ that much in practice
- ...if there are bad schools (that everyone dislikes)
- ...and priority structure maps each student to one school
- Students' preferences may not matter

- BM and DA are by far the two most popular mechanisms
- ...although other mechanisms (TTC, Pseudomarkets) have been theoretically proposed
- A long-lasting debate between BM and DA
- However, we show that these two mechanisms may not differ that much in practice
- ...if there are bad schools (that everyone dislikes)
- ...and priority structure maps each student to one school
- Students' preferences may not matter

- In big economies with bad schools and binary priority structure mapping each student to one school...
- Every mechanism containing a strategy for each student that ensures assignment to her priority-giving school has a NE whose outcome is an assignment completely driven by priorities
- This is the unique dominant strategy assignment in DA
- This is the unique-NE outcome of BM if sufficiently many/low-valued bad schools

Boston Mechanism (BM) and Deferred Acceptance (DA)

- Parents report a ranking over schools. Round by round assignment
- In each round we consider each not-removed student for her reported best school that has not rejected her yet
- With excess demand, schools reject some students according to priorities and lotteries
- Differences with respect to how **accepted** students are treated:
 - BM: they obtain their slots and do not go to further rounds (definite acceptance).
 - DA: they are reconsidered for that school in further rounds (tentative acceptance).

Pref.	Prio.	BM	DA
$a \succ_1 b \succ_1 c$	1 <i>pr_a</i> 2	$\begin{array}{c} \text{Round 1} \\ 1 \rightarrow a, 2 \not\rightarrow a, 3 \rightarrow c \end{array}$	$\begin{array}{c} \text{Round 1} \\ 1 \rightarrow a, 2 \not\rightarrow a, 3 \rightarrow c \end{array}$
$a \succ_2 c \succ_2 b$	2 <i>pr</i> _c 3	Round 2 $2 \rightarrow c$	$\begin{array}{c} \text{Round } 2\\ 1 \rightarrow a, 2 \rightarrow c, 3 \rightarrow c! \end{array}$
$c \succ_3 b \succ_3 a$		Round 3 $2 \rightarrow b (put c first)$	$\begin{array}{c} \text{Round } 3\\ 1 \rightarrow a, 2 \rightarrow c, 3 \rightarrow b \end{array}$

- Set G of J good schools j, plus one bad school w
- $\eta_w < 1$ capacity of bad school, $\frac{1-\eta_w}{J}$ capacity of each j
- Set X = [0, 1] of students x, (uniform measure λ)
- Preferences $v: X \to [0,1]^J \times \{v_w\}, v_w \le 0 \ (\lambda(\mathit{Indiff}) = 0)$
- Priority structure $\pi: X \to G \cup \{w\}$

•
$$S_j = \{x \in X : \pi(x) = j\}, S_G = \bigcup_{j \in G} S_j$$

- Assignment $\mu: X \to G \cup \{w\}$
- Random assignment $q: X \to \Delta^J$ (Q: all feasible rand. assig.)
- Expected utility $q(x) \cdot v(x)$

- Pure strategy profile $\sigma: X \to \Pi(G \cup \{w\})$ (ranking)
- Σ : set of all σ
- Game $\Gamma_{\pi}: \Sigma \to Q$
- Standard notions of equilibria σ^* (NE, DSE...)
- An (NE-, DSE-) outcome is $\Gamma_{\pi}(\sigma^*)$
- Completely driven by priorities if collapses to $\mu = \pi$

Let Γ_{π} be such that each student $x \in S_G$ has a strategy s(x) ensuring sure assignment to $\pi(x)$. Consider any s(y) for each student $y \in X \setminus S_G$. Then s constitutes a NE.

- Finite economy: If every $x \in S_G$ but one (y) plays s(x), this student will have chances at either $\pi(y)$ or w. She will optimally respond with s(y)
- The outcome $\Gamma_{\pi}(s)$ is completely driven by priorities.

Let Γ_{π} be such that each student $x \in S_G$ has a strategy s(x) ensuring sure assignment to $\pi(x)$. Consider any s(y) for each student $y \in X \setminus S_G$. Then s constitutes a NE.

- Finite economy: If every $x \in S_G$ but one (y) plays s(x), this student will have chances at either $\pi(y)$ or w. She will optimally respond with s(y)
- The outcome $\Gamma_{\pi}(s)$ is completely driven by priorities.

Let DA_{π} denote the game described by the DA algorithm with priorities π and fair tie-breaking lotteries. Then the DSE σ^{DA} leads to an outcome $DA_{\pi}(\sigma^{DA})$ that is completely driven by π .

- Let m : X → [0,1] be a fair lottery outcome breaking ties in the increasing order, and μ_{πm}(σ^{DA}) the corresponding DA assignment
- $\mu_{\pi m}(\sigma^{DA})$ respects strict priorities set by π and m (stable)
- $\mu_{\pi m}(x) \neq w \ \forall x \in S_G$ (they would have applied for $\pi(x)$ earlier) $\implies \mu_{\pi m}(x) = w \ \forall x \in X \setminus S_G$
- Let $X' = \{x \in S_{\mathcal{G}} : \mu_{\pi m}(x) \neq \pi(x)\}$ have positive measure
- Stability violated: agents $x \in X \setminus S_G$ with $m(x) < \max_{y \in X'} m(y) = 1$

Let DA_{π} denote the game described by the DA algorithm with priorities π and fair tie-breaking lotteries. Then the DSE σ^{DA} leads to an outcome $DA_{\pi}(\sigma^{DA})$ that is completely driven by π .

- Let m : X → [0,1] be a fair lottery outcome breaking ties in the increasing order, and μ_{πm}(σ^{DA}) the corresponding DA assignment
- $\mu_{\pi m}(\sigma^{DA})$ respects strict priorities set by π and m (stable)
- $\mu_{\pi m}(x) \neq w \ \forall x \in S_G$ (they would have applied for $\pi(x)$ earlier) $\implies \mu_{\pi m}(x) = w \ \forall x \in X \setminus S_G$
- Let $X' = \{x \in S_G : \mu_{\pi m}(x) \neq \pi(x)\}$ have positive measure
- Stability violated: agents $x \in X \setminus S_G$ with $m(x) < \max_{y \in X'} m(y) = 1$

- Need additional structure
- Each $v_j(x)$ drawn independently from F (full support, no atoms)
- Symmetric NE (SNE) σ^* . For any $x, y \in S_G$ such that $v_{\pi(y)}(y) = v_{\pi(x)}x$ and there is a permutation $\rho : v(y) = \rho(v(x))$, we have $\sigma^*(y) = \rho(\sigma^*(x))$.
- Characterized by α^* , proportion of students with priority at a good school who put another school in first place.
- Let $\bar{\alpha}$ be the maximum α^* .
- The outcome under $\bar{\alpha}$ ex-ante Pareto-dominates the outcome under $\alpha^* = 0$.

Fix F and J. If $\bar{\alpha} > 0$, it is decreasing in η_w and $-v_w$. $\bar{\alpha} = 0$ if either η_w or $-v_w$ are high enough.

- Let $\bar{\alpha} > 0$. No-priority supply of a good school: $\bar{\alpha} \frac{1-\eta_w}{J}$
- No-priority demand (J − 1) α
 ^{1−ηw}/_J/(J − 1) + ηw/J. Acceptance
 probability q(α
) =
 ^{α(1−ηw)}/_{α(1−ηw)+ηw}
- Eq. $q(\bar{\alpha}) = \omega(\bar{\alpha}), \ \omega(\cdot)$: inverse of distribution of $\frac{v_{\pi(x)}(x) v_w}{\max_{j \in G} v_j(x) v_w}$
- $\Delta \eta_w$ moves $q(\cdot)$ down. $\Delta(-v_w)$ moves $\omega(\cdot)$ up.
- Reinforced by extra valuation for priority-giving schools

Fix F and J. If $\bar{\alpha} > 0$, it is decreasing in η_w and $-v_w$. $\bar{\alpha} = 0$ if either η_w or $-v_w$ are high enough.

- Let $\bar{\alpha} > 0$. No-priority supply of a good school: $\bar{\alpha} \frac{1-\eta_w}{J}$
- No-priority demand (J − 1)ā^{1−η_w}/_J/(J − 1) + η_w/J. Acceptance probability q(ā) = a(1−η_w)/(ā(1−η_w)+η_w
- Eq. $q(\bar{\alpha}) = \omega(\bar{\alpha}), \ \omega(\cdot)$: inverse of distribution of $\frac{v_{\pi(x)}(x) v_w}{\max_{j \in G} v_j(x) v_w}$
- $\Delta \eta_w$ moves $q(\cdot)$ down. $\Delta(-v_w)$ moves $\omega(\cdot)$ up.
- Reinforced by extra valuation for priority-giving schools

Let TTC_{π} denote the game described by the TTC algorithm with priorities π and fair tie-breaking lotteries. Then the DSE σ^{TTC} leads to an outcome $TTC_{\pi}(\sigma^{TTC})$ that ex-ante Pareto-dominates $\mu = \pi$.

- For any $m: X \to [0, 1]$ fair lottery outcome breaking ties in the increasing order, and being $\mu_{\pi m}(\sigma^{TTC})$ the corresponding TTC assignment, $\mu_{\pi m}(\sigma^{TTC})$ Pareto-dominates μ
- Plus it does not violate stability with this type of π
- TTC characterized in Abdulk. and Che (2010) (recursive individual rationality wrt π)

Let TTC_{π} denote the game described by the TTC algorithm with priorities π and fair tie-breaking lotteries. Then the DSE σ^{TTC} leads to an outcome $TTC_{\pi}(\sigma^{TTC})$ that ex-ante Pareto-dominates $\mu = \pi$.

- For any $m: X \to [0, 1]$ fair lottery outcome breaking ties in the increasing order, and being $\mu_{\pi m}(\sigma^{TTC})$ the corresponding TTC assignment, $\mu_{\pi m}(\sigma^{TTC})$ Pareto-dominates μ
- Plus it does not violate stability with this type of π
- TTC characterized in Abdulk. and Che (2010) (recursive individual rationality wrt π)

- For years we have thought of the authority as a student-choice-maximizer subject to the respect for priorities
- But maybe priorities reflect authority's own objective function
- ...and (the mirage of) school choice is the constraint

- In big economies with bad schools and binary priority structure mapping each student to one school...
- DA leads to an assignment that fits the priority structure
- Also BM if the worst school is sufficiently big/bad
- TTC Pareto-dominates this assignment while keeping stability
- ...yet only DA and BM are widely used!