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Abstract. In a big uncertain game a stage game is played repeatedly by a large

anonymous population. Players�privately known types are correlated through an

unknown state of fundamentals and the game is played with imperfect monitoring.

Under simple behavioral assumptions, the game admits Markov-perfect equilibria.

We show that with time, equilibrium play in these games becomes highly pre-

dictable and stable, if uncerainty that is not explained by fundamentals is small.

1. Overview of big uncertain games

Strategic interaction in large populations is a subject of interest in economics, po-

litical science, computer science, biology, and more. Indeed, the last three decades

have produced a substantial literature that deals with large strategic games in a

variety of applications, such as markets [31], bargaining [25], auctions [32, 33], vot-

ing [10, 29], electronic commerce [14], and market design [3, 6].

This paper focuses on games that are big in two senses. First, they are played by

a large anonymous population of players, as in many of the current models of large
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games. But in addition, they are played repeatedly with no end in sight. Moreover,

these big games are subject to fundamental uncertainty for three reasons: (1) There

is an unknown state of fundamentals of the game. (2) There are privately known

player types with probability distributions that depend on this unknown state; thus,

the player types are statistically correlated. (3) Period outcomes are determined

randomly, based on the fundamental state and the players�actions.

Such big games are common. For example, they include repeated production

and consumption games, in which period outcomes are prices; repeated rush-hour-

commute games, in which outcomes are driving times; and network-communication

games, in which outcomes are population distributions of communication devices.

But the complexity, due to repetition and uncertainty, makes Bayesian analysis of

these games di¢ cult.

The main body of the paper provides a formal explanation of a phenomenon often

observed in a big games that are subject only to low levels of unexplained uncertainty:

except for a limited proportion of learning periods, equilibrium play becomes highly

predictable and stable.

To motivate the notions of predictability and stability, consider repeated rush-

hour-commute games, in a transportation system that has gone through subtantial

changes, e.g., roads or train lines were added or updated. The players (and even the

designers of the system) may be unsure about the fundamentals of the new systems

(e.g., capacity and safety of the roads at various levels of congestion), and about the

individual player information and preferences over the use of roads.

To say that a morning rush-hour commute is highly predictable means that there

is near certainty that all the commuters� assessments of the driving times, made
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prior to the start of the rush hour, turn out to be quite accurate, say, within a few

minutes of the actually realized rush-hour driving times. High stability in such a

period is meant in a hindsight sense, sometimes referred to as a no regret, or ex-post

Nash. It means that there is near certainty that once everybody starts driving

and becomes informed of the realized morning driving times, perhaps from a radio

report, no player may recognize a gain of more than a few minutes by switching to

a route di¤erent from the one she had chosen. Notice that lack of stability implies

(potential) chaos: some players may choose to deviate from their optimally chosen

routes, their deviations may lead other drivers to deviate from their chosen routes,

and so forth.1 As one may anticipate, at equilibrium a high level of predictability

implies a high level of stability.

In price formation games, where period prices are determined by period consump-

tion and production decisions, hindsight stability means that the prices are compet-

itive and re�ect rational expectations. In the concluding section of the paper, we

study in detail a big repeated Cournot game. There, the state of fundamentals is the

di¢ culty of producing a new product and the types describe privately known pro-

duction costs of the individual producers, which are correlated through the unknown

state of fundamentals.

In these Cournot games, the general �ndings presented in this paper make it is

easy to construct and play the following unique equilibria: Every period belongs to

one of three possible regimes that depend on the ease of production perceived prior

to the start of the period: (1) "perceived-easy," (2) "perceived-di¢ cult," or (3) "not

1This paper does not model (1) the behavior of the players within a chaotic period, or (2) the
possible e¤ect of the chaotic behavior on the play in future periods. In other words, in their future
play the players will take into consideration the initially reported driving times and not the realized
chaotic driving times that followed later in the morning.
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determined." In the periods in regime 1, all the ine¢ cient producers stay out and

the e¢ ceint producers produce according to a mixed strategy. In the periods in

regime 2, all the e¢ cient producers produce at full capacity and the ine¢ cient ones

produce according to a mixed strategy. In the periods in regime 3, both e¢ cient

and ine¢ cient producers follow mixed strategies. Roughly speaking, in any state

of fundamentals, in regimes 1 and 2 the outcomes are highly predictable and stable,

while regime 3 consists of learning periods.

In the examples above and in other big games, period outcomes may be unpre-

dictable due to randomness that cannot be explained by the fundamentals of the

game. For example, an unanticipated tra¢ c accident in a morning rush hour may

throw o¤ rational predictions of the morning driving times. Similarly, the presence

of unanticipated noise traders on a given day may cause signi�cant deviation from

the anticipated day prices. Such randomness interferes with the players�ability to

predict the outcomes of periods, even in the absence of fundamental uncertainty.

The main �ndings of the paper include bounds on (1) the �nite number of un-

predictable chaotic learning periods, K, during which the players learn all they can

about the uncertain fundamentals; and (2) the level of stability possible in the non-

learning periods, and its dependence on the level of unexplained uncertainty in period

outcomes.

To argue for the existence of the �nite number of learning periods, K, we extend

results from the rational learning literature: in n-person Bayesian repeated games,

players learn to forecast probabilities of period outcomes in all but K periods. To

argue for predictability in the remaining nonlearning periods, we extend results from
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the literature on large one-shot games: when the number of players is large, for-

casting probabilities of period outcomes can be replaced by learning to predict the

realized outcomes and not just their probabilities. By generalizing and combining

the results above, under the behavioral assumptions of this paper, we obtain highly

accurate predictions (up to the level permitted by the unexplained randomness of

the outcomes) in all but the K learning periods.

It is important to note that our players are "rational learners," in that their objec-

tive is to maximize their expected payo¤ in the play of Bayesian equilibrium. "Irra-

tional learners," such as followers of naive best-reply dynamics, may never converge

to stability. Consider, for example, a repeated rush-hour game with two identical

parallel routes, A and B, both from starting point S to destination T , and drivers

who wish to travel on the least congested of the two routes. If on day one most

drivers use A, then the best-reply dynamics would have them all alternate between

B;A;B;A; ::: from the second day on, and in no period is the equilibrium driving

pattern stable.

The Bayesian analysis in this paper is greatly simpli�ed under the behavioral as-

sumption of imagined-continuum reasoning, which means that the players replace

random variables of the population by their expected values. For example, in the

two-route commute game above, if a player believes that each of the commuters

independently and randomly chooses A or B with probabilities 2=3 and 1=3, respec-

tively, then the player would assume that with certainty 2=3 of the population ends

up choosing A and 1=3 choosing B. This assumption is made throughout the game

whenever random choices are made independently, even when conditioned on past

events. Moreover, in doing such �compression� to (conditional) expected values,
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players ignore their own e¤ect on population proportions. For example, a player who

believes that the population is divided 2=3 to 1=3 between A and B would hold this

belief no matter which route she herself chooses.2

The imagined-continuum view is natural when players wish to simplify highly

complex computations. In our big games, many of the Bayesian calculations required

of rational players are eliminated. But since the continuum is only imagined, as game

theorists we are careful to compute probabilities in the actual process, the one in

which n continuum-imagining players use best-response strategies to generate events

in the repeated game. After all, whether a player would want to deviate from a route

that she has chosen depends on the actual observed driving times determined by the

n drivers on the road and not by the hypothetical continuum that she or the other

drivers imagine.

The discrepancy between the continuum game and the n- player imagined con-

tinuum game is important when we study repeated games, due to a discontinuity

in probability computations. For example, in repeated games there are events that

have probability one in the continuum game, but probability zero in the n-player

imagined-continuum games, regardless of the number of players n (see our compan-

ion paper [22]).

An important consequence of the imagined-continuum assumption is the existence

of myopic Markov-perfect Nash equilibria. Focusing on these equilibria in this paper

simpli�es the presentation of the results without much loss of generality, since (1)

these equilibria seem to be focal in the minds of rational players, and (2) most of

2See, for example, Mcafee [27] for an earlier use of this idea. In his paper a sellers o¤er competing
mechanisms to buyers. While the analysis is performed on a �nite set of sellers, these sellers neglect
their impact on the utility of buyers who don�t participate in their mechanism.
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the observations discussed in this paper are true for Nash equilibria, without these

restrictions (see our companion paper [22]).

The �ndings of the current paper, presented in Part 1, may be used as an initial

building block toward a more general theory of big games, in which the fundamentals

change during the play of the game. This is left for future research, but we present

preliminary observations, that point to the emergence of stability cycles, in Part 2.

Part 3 presents the proofs used for the observations discussed in Part 1.

2. Relationship to Earlier literature

Kalai [19] and following papers [8, 3, 9, 13] demonstrate that (hindsight) stability

is obtained in large one-shot Bayesian games with independent player types. These

papers discuss examples from economics, politics, and computer science in which

stability is highly desirable. In market games in particular, stability implies that

Nash equilibrium prices are competitive.3

The interdependency of player types is a fundamental di¢ culty when dealing with

stability, as illustrated by following example from Kalai [19]: There is an unknown

state of fundamentals, s = A or s = B, about which every player i is given a

private 70 percent accurate signal gi (Pr(gi = s) = 0:7 and Pr(gi = sc) = 0:3),

independtently of the signals of the others. Trying to match the state, every player

chooses an action, ai = A or ai = B, and is paid 1 if ai = s, but 0 if ai = sc.

Assuming that every player follows her dominant strategy (ai = gi) and that the

3Kalai [19] also demonstrates that hindsight stability implies a stronger stability property, referred
to as "structural robustness," and Deb and Kalai [9] allow a continuum of actions and heterogeneous
types of players. The current paper does not deal with either of these features. See also Azrieli
and Shmaya [4], and Babichenko [5], both of which follow Kalai�s paper, but take it in di¤erent
directions.
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number of players is large, in hindsight, approximately 30 percent of the players

would like to change their actions .

The example above explains why Kalai [19] had to be restricted to independent

types. This restriction, which disallows correlation of types through unknown fun-

damentals, is a severe limitation in economic applicability of the paper.

By extending the model to repeated games, the current paper expands the ap-

plicability in two ways. First is the obvious point that many large games are played

repeatedly. But more subtle is the observation made through the main �ndings

of the paper: with time, players "learn to be independent" and predictability is

obtained.

One-shot large games with complete information were introduced by Schmei-

dler [35], who showed that with a continuum of players such games admit pure-

strategy equilibria.4 The more recent literature of mean �eld games (see the survey

in Lions�lecture notes [16]), may be viewed as a continuous-time dynamic extension

of Schmeidler�s model that allows for mixed strategies and randomly changing states.

The continuum of players allows the modelers to cancel aggregate uncertainties, in

a manner similar to the imagined-continuum model of this paper.5 But the impor-

tant di¤erences with the current paper exist: (1) In the imagined-continuum model

there are n players who follow the continuum reasoning, whereas in the mean �eld

model, as in Schmeidler�s paper, there is a continuum of players. The discontinuity in

the computation of probabilities, discussed earlier, limits the relevance of mean �eld

4See [23] for citations of articles that follow up on Schmeidler�s paper [35]. See Sorin and Wan [37]
for a hybrid model that allows atomic and non-atomic players.
5See also papers by Judd [18] and Sun [38] for exact law of large numbers, that formalizes the idea
that there is no aggregate uncertainty when a continuum of players randomize independently.
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games to repeated games with a large but �nite number of players. For elaboration,

see our companion paper [22].

(2) In mean �eld games the state of fundamentals changes with time. But this

changing state is publicly observed, as compared with this paper in which the �xed

state of fundamentals is unknown and has to be learned from the play. With addi-

tionly complex notations, this paper can also accomodate publicly observed changing

states.6

(3) More generally, the mean �eld approach deals with uncertainties that are

"eliminated in the average." This is not the case when we deal with an unknown state

of fundamentals. The issues of Bayesian updating and learning of the fundamentals,

which are central to this paper, have no analogues in the current literature on mean

�eld games.

A pioneering paper on large repeated games is Green [15], which studies large re-

peated strategic interaction under restrictions to complete information and to pure

strategies. Green and Sabourian [34] derive conditions under which the Nash corre-

spondence is continuous, in the sense that the equilibrium of the continuum game is a

limit of the equilibria of the standard n-player games with increasing n (as opposed to

the n-player imagined continuum games). In addition to Green�s paper, the myopic

property of large repeated games has been studied in Al-Najjar and Smorodinsky [1].

In regard to incomplete information, the "learning to predict" theorem presented in

this paper relies on earlier results from the literature on rational learning in repeated

games, such as Fudenberg and Levine [12], Kalai and Lehrer [21, 20], and Sorin [36].

6The concluding part of this paper discusses preliminary results on big games with unobserved
changing fundamentals.
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An early reference to Markov-perfect equilibria is Maskin and Tirole�s paper [26].

The body of the current paper elaborates on some properties of the imagined-

continuum Markov equilibrium, enough for us to present the results on predictions

and hindsight stability. Our companion paper [22], henceforth KS, studies this type

of equilibrium in depth and presents results on how the n-player imagined-continuum

Markov equilibrium o¤ers a good asymptotic approximation to the Nash equilibrium

of the standard n-player game. The current paper uses the same model as in KS,

described in Section 3.

As mentioned above, compressing computations to expected values is used in a

variety of current models in economics. See, for example, McCa¤ee [27], Angeletos

et al. [2], and Jehiel and Koessler [17], all of whom study a dynamic global game

with fundamental uncertainty. Lykouris at el. [24] introduced stability cycles, in a

much di¤erent environment than the one discussed in our concluding section.

Part 1. Big uncertain games with �xed unknown fundamentals

3. The model

A stage game is played repeatedly in an environment with an unknown �xed state

of fundamentals, s (also referred to as a state of nature), by a population of n players

whose �xed, privately known types ti are statistically correlated through the state s.

The environment and the game are symmetric and anonymous.

We consider �rst the game skeleton that consists of all the primitives of the game

other than the number of players. Augmenting the game skeleton with a number

of players n results in a fully speci�ed Bayesian repeated game. This organization
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eases the presentation of asymptotic analysis, as one can keep all the primitives of

the game �xed while varying only the number of players n.

De�nition 1. [Game] A game skeleton is given by � = (S; �0; T; � ; A;X; �; u) with

the following interpretation:

� S is a �nite set of possible states of nature; �0 2 �(S) is an initial prior

probability distribution over S.7

� T is a �nite set of possible player types. The function � : S ! �(T ) is a

stochastic type-generating function used initially to establish types. Condi-

tional on the state s, � s(t) is the probability that a player is of type t, and

it is (conditionally) independent of the types of the opponents. The selected

types, like the initially drawn state of fundamentals, remain �xed throughout

the repeated game.

� A is a �nite set of possible player�s actions, available to a player in every

period.

� X is a countable set of outcomes, and for every s 2 S and every e 2 �(T�A),

�s;e is a probability density function over X. In every period, e(t; a) is the

empirical proportion of players in the population who are of type t and who

choose the action a. �s;e(x) is the probability of the outcome x being realized

and announced at the end of the period. We assume that the function e 7!

�s;e(x) is continuous for every s and x.

� u : T�A�X ! [0; 1] is a function that describes the player�s payo¤ : u(t; a; x)

is the period payo¤ of a player of type t who plays a when the announced

period outcome is x.

7As usual, �(B) is the set of all probability distributions over the set B.



LEARNING AND STABILITY 12

Remark 1. All the de�nitions and results hold also when X is a subset of Euclid-

ean space, and �s;e is a density function. In this case we have to assume that the

function e 7! �s;e is continuous when the range is equipped with the L
1-norm and

that the payo¤ function u is a Borel function. See an example in Section 6. To

simplify notations we assume that X is countable but our proofs do not rely on this

assumption. We also identify density functions with probability distribution, so for

density function � over X we let �(B) be the probability of B � X. This abuse

of notations is common in the case of discrete X but not in the case of continuous

distributions.

Example 1 (Repeated computer-choice game with correlated types). As in the

example of the one-shot computer-choice game from Kalai [19], let S = T = A =

fPC;Mg denote two possible states of nature, two possible types of players, and two

possible actions to select. But now these selections are made repeatedly in discrete

time periods k = 0; 1; 2; :::.

Initially, an unknown state s is chosen randomly with equal probabilities, �0(s =

PC) = �0(s =M) = 1=2; and conditional on the realized state s, the �xed types of

the n players are drawn by an independent identical distribution: � s(ti = s) = 0:7

and � s(ti = sc) = 0:3, where sc is the unrealized state. Each player is privately

informed of her type ti. Both s and the vector of tis remain �xed throughout the

repeated game.

Based on player i�s information at the beginning of each period k = 0; 1; :::, she

selects one of the two computers, aik = PC or aik =M. These selections determine

the empirical distribution of type-action pairs, ek, where ek(t; a) is the proportion of

players who are of type t and who choose the computer a in the kth period.



LEARNING AND STABILITY 13

At the end of each period, a random sample (with replacement) of J players is

selected, and the sample proportion of PC users x = xk(PC) is publicly announced

(xk(M) � 1 � x). Thus, the probability of the outcome x = y=J being selected

(when the state is s and the period�s empirical distribution is e) is determined by a

binomial probability of having y successes in J tries, with a probability of success

ek(PC;PC) + ek(M;PC).

Player i�s payo¤ in period k is given by

uik(t
i; aik; xk) = (xk[a

i
k])

1=3 + 0:2�aik=ti ;

where �aik=ti is 1 if she choose her type and 0 otherwise. The game is in�nitely

repeated, and a player�s overall payo¤ is the discounted sum of her period payo¤s.

3.1. Bayesian Markov strategies. We study a symmetric equilibrium in which

all the players use the same strategy �. Normally, a player�s strategy in the repeated

game speci�es a probability distribution by which the player selects an action in

every period, as a function of (i) her type, (ii) the observed history of past publicly

announced outcomes, and (iii) her own past actions. However, we are interested only

in a certain class of strategies: �Bayesian Markov strategies�(or Markov strategies,

for short). When playing a Markov strategy, the player does not condition her

selection on her own past actions. Moreover, her selection of an action depends on

the past publicly announced outcomes only through a Markovian state, which is the

posterior public beliefs over the state of nature.

De�nition 2. A (Bayesian) Markov strategy is a function � : �(S)� T ! �(A).
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The interpretation is that ��;t(a) is the probability that a player of type t 2 T

selects the action a 2 A, in periods in which the �public belief� about the state

of nature is �. The term �public belief� is in quotes because these beliefs are not

derived from correct Bayesian reasoning. Instead, they are derived by the imagined-

continuum reasoning described in Section 3.2.

Notice that as de�ned, a Markov strategy � may be used by any player regardless

of the number of opponents and the repetition-payo¤ structure.

3.2. Beliefs in the imagined-continuum model. By the �public belief�at the

beginning of period k, we mean the belief over the state of nature held by an outside

observer who (i) knows the players�strategy �, and (ii) has observed the past publicly

announced outcomes of the game. A main feature of our de�nition of Markov strate-

gies and equilibrium is that these beliefs di¤er from the correct posterior conditional

distributions over the state of nature: They are updated during the game using what

we call �imagined-continuum reasoning.� Under imagined-continuum reasoning, all

uncertainty about players�types and actions conditioned on the state of nature is

compressed to its conditional expectations, resulting in known, deterministic, con-

ditional distributions. Speci�cally, the public beliefs are de�ned recursively by the

following process:

� The initial public belief is that the probability of every state s is �0(s).

� In every period that starts with a public belief �, the imagined empirical

proportion of a type-action pair (t; a) in the population is

(3.1) d�(t; a) � � s(t) � ��;t(a);
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and the posterior public belief assigned to every state s is computed by Bayes

rule to be

(3.2) ��;x(s) �
�(s) � �s;d�(x)P

s02S �(s
0) � �s0;d�(x)

:

Like the public observer each player ignores the impact of her type and actions on

period outcomes. In addition, she has additional information for assessing probabil-

ities of states of nature, namely, the realization of her own type. Under imagined-

continuum reasoning, her type and the public outcome are conditionally independent

of each other for any given state of nature. This implies that we can use Bayes for-

mula to compute her private belief about the state of nature from the public belief.

Formally, in every period that starts with the public belief �, for any player of type

t the private belief probability assigned to the state of nature s is

(3.3) �(t)(s) � �(s) � � s(t)P
s02S �(s

0) � � s0(t)
:

3.3. Markov-perfect equilibrium. We are now in a position to de�ne the equilib-

rium concept used in this paper. Under the imagined-continuum view, the players

ignore the impact of their own action on the outcome, and a player of type t believes

the outcome is drawn from the distribution �(�(t); �) where �(t) is given by (3.3) and

� : �(S)��(S)! �(X) is given by

(3.4) �(�; �) =
X
s2S

�(s)�s;d� ;
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where d� is given by (3.1). Thus, �(�; �) is the forecast about the period outcome of

an observer whose belief about the state of nature is � when the public belief about

the state of nature is �.

De�nition 3. A (symmetric, imagined-continuum) Markov (perfect) equilibrium is

given by a Markov strategy � : �(S)� T ! �(A), such that

[�(�; t)] � argmaxa
X
x2X

�(�(t); �)(x)u(t; a; x)

for every public belief � 2 �(S) about the state of nature and every type t 2 T ,

where [�(�; t)] is the support of �(�; t), the private belief �(t) is given by (3.3), and �

is given by (3.4).

According to the imagined-continuum equilibria, each player of type t treats the

public outcome as a random variable with distribution �(�(t); �), ignoring her impact

on the outcome. This is a generalization of the economic �price-taking�property

in Green [15] to a stochastic setting and to applications other than market games.

For this reason our players may be viewed as stochastic outcome takers. Note that

imagined-continuum equilibria are, by de�nition, myopic: at every period the players

play an imagined-continuum equilibrium in the one-shot Bayesian game for that

period.

Remark 2. In our companion paper [22] we de�ne the notion of imagined-continuum

equilibrium more generally (without assuming the Markov property and myopia) and

prove that (i) every imagined-continuum equilibrium is myopic, (ii) probabilities of

certain outcomes computed in the imagined game approximate the real probabilities

computed in the standard �nite large versions of the game, and (iii) best-responses
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(and Nash equilibria) in the imagined game are uniformly � best-responses (and �

Nash equilibria) for all su¢ ciently large �nite standard versions of the game.

Notice also that under myopia, the equilibrium that we study and the main results

that follow are applicable for a variety of repetition and payo¤ structures. For ex-

ample, the game may be repeated for a �nite number of periods with overall payo¤s

assessed by the average period payo¤, or the game may be in�nitely repeated with

payo¤s discounted by di¤erent discount parameters by di¤erent players.

Another consequence of myopia is that the set of players may change and include

combinations of long-lived players, short-lived players and overlapping generations,

provided that (i) the death and birth process keeps the size of the population large,

(ii) that process does not alter the state and the players�type distribution, and (iii)

that players of a new generation are informed of the latest public belief about the

unknown state.8

3.4. The induced play path. To compute the probability of actual events in the

game, we need to describe the actual probability distribution induced over play paths

when players follow a Markov strategy � (as opposed to the beliefs that are derived

from the imagined-continuum reasoning).

We use boldface letters to denote random variables that assume values from cor-

responding sets. For example, S is the random variable that describes a randomly-

selected state from the set of possible states S. We use superscripts to denote players�

names, superscripts in parenthesis to denote players�types and subscripts to denote

periods�numbers.

8Games in which the number of players is large and unknown and follows a Poisson distribution have
been studied in Myerson [28]. By restricting ourselves to games of proportions, lack of knowledge
of the number of players becomes a trivial issue in the current paper.
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The de�nition below is applicable to a game with a set N of n players with any

repetition-payo¤ speci�cation. As already stated, all the players use the same strat-

egy �.

De�nition 4. Let � be a Markov strategy of the �nite game with n players. The

random �-play-path is a collection
�
S;Ti;Ai

k;Xk

�
i2N;k=0;1;::: of random variables9,

representing the state of nature, types, actions, and outcomes, such that:

� The state of nature S is distributed according to �0.

� Conditional on S, the players types Ti are independent and identically dis-

tributed with the distribution �S.

� Conditional on the history of periods 0; : : : ; k � 1, players choose period k

actions Ai
k independently of each other. Every player i 2 N uses the distri-

bution �Ti; �k
, where �k is the public belief at the beginning of period k,

given by

�0 = �0; and

�k+1 = ��k;Xk
; for k � 0;

(3.5)

and � is de�ned in (3.2).

� The outcome Xk of period k is distributed according to �S;ek , where

(3.6) ek(t; a) = #fi 2 N jTi = t;Ai
k = ag=n

is the (random) empirical type-action distribution in period k.

9We do not specify the probability space or the domain of these variables, but only the probability
distribution over their values. The play path is unique in distribution.
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In equations:

P
�
S = s;Ti = ti i 2 N

�
= �0(s) �

Y
i2N

� s(t
i);

P
�
Ai
k = a

i i 2 N
��S;Ti;Ai

l;Xl l < k; i 2 N
�
=
Y
i2N

��k;Ti(a
i);

P
�
Xk = x

��S;Ti;Ai
l l � k; i 2 N;X0; : : : ;Xk�1

�
= �S;ek(x);

(3.7)

where ek is given by (3.6), and �k is given by (3.5).

Note that the imagined-continuum reasoning enters our de�nition only through (3.5),

which re�ects the way that the outside observer and the players process information.

The assumption of imagined-continuum reasoning lies behind the simple form of the

public beliefs process �0;�1; : : : . Two important properties are a consequence of

this de�nition: (i) �k admits a recursive formula (i.e., the outside observer and

the players need keep track of only their current belief about state of nature and

not their beliefs about players� types and actions), and (ii) this formula does not

depend on the number of players. Both these properties do not hold for the beliefs

P (S 2 � jX0; : : : ;Xk�1 ) of the game theorists who do the correct Bayesian reasoning.

4. Correct predictions

Consider a game skeleton � played repeatedly by n players. Let � be a Markov

strategy and consider the random � play path
�
S;Ti;Ai

k;Xk

�
i2N;k=0;1;:::.

Recall that we denote by �k the public belief about the state of nature at the

beginning of period k, given by (3.5). For every type t 2 T , let

(4.1) �
(t)
k (s) =

�(s) � � s(t)P
s02S�(s

0) � � s0(t)
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be the belief of a player of type t about the state of nature, computed under the

imagined-continuum reasoning, as in (3.3). Also let �(t)k = �(�
(t)
k ;�k) be the prob-

ability distribution of the �(X)-valued random variable that represents the forecast

of a player of type t about the outcome of period k, where the forecast function �

is given by (3.4). In this section we give conditions under which these probabilistic

forecasts can be said to predict the outcome.

We assume hereafter that the space X of outcomes is equipped with a (complete,

separable) metric �. The event that players make (r; �)-correct predictions in period

k is given by

(4.2) R(k; r; �) =
n
�
(t)
k (B(Xk; r)) > 1� � for every t 2 T

o
where B(Xk; r) = fx 2 Xj�(x;Xk) � rg is the closed ball of radius r around Xk.

Thus, players make (r; �) correct predictions at period k if each player assigns a

probability at least 1� � to a ball of radius r around the realized outcome Xk, before

she observes its realized value.

De�nition 5. Let � be a game skeleton and let � be a Markov strategy. We say

that players make asymptotically (r; �; �)-correct predictions under � in period k if

there exists some n0 such that

P(R(k; r; �)) > 1� �

in every n-player game with n > n0.

We proceed to provide conditions on the game skeleton under which players make

asymptotically correct predictions. For every probability distribution function � over
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X, let Q� : [0;1)! [0; 1] be the concentration function of � given by

(4.3) Q�(r) = 1� sup
D
�(D);

where the supremum ranges over all closed subsets B ofX with diameter diam(D) �

r (where diam(D) = supx;x02B �(x; x
0) where � is the metric on X). When � is the

distribution of a random variable X, we also denote QX = Q� . The following are

examples of concentration functions:

Example 2. [Concentration functions]

� If for some a, a � X � a+ :01, then QX(0:01) = 0.

� If X is a �nite set and P(X = x0) = 1� � for some x0 2 X and small � > 0,

then QX(0) = �.

� IfX = R andX is a random variable with variance �2, then from Chebyshev�s

Inequality it follows that QX(r) � 4�2=r2.

� If X = R and X is a random variable with a Normal distribution with

standard deviation �, then QX(r) = 2(1� �(r=2�)) � 2 exp(�r2=2�2).

For every game skeleton �, we let Q� : [0;1) ! [0; 1] be given by Q�(r) =

sups;eQ�s;e (r). For example Q�(0:01) = 0 in the round-o¤ case, where outcomes are

empirical distributions randomly rounded o¤ to integral percentages.

Theorem 1 (Correct predictions). Fix a game skeleton �. For every �; � > 0 there

exists an integer K such that under every Markov strategy � and every r > 0, in all

but at most K periods players make [r;Q�(r) + �; Q�(r) + �]-asymptotically correct

predictions.
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The appearance of Q�(r) in Theorem 1 is intuitively clear: increasing the concen-

tration of the random outcome (e.g., by taking a larger sample size J in Example 1)

improves the level of predictability and stability. But if the variance is large (as

in Example 1 with a small sample size), predictability and stability are not to be

expected.

5. Stability

Consider a game skeleton � played repeatedly by n players. Let � be a Markov

strategy and consider the random � play path
�
S;Ti;Ai

k;Xk

�
i2N;k=0;1;:::. The event

that period k is � -hindsight stable is given by

H(k; �) =
�
u(Ti;Ai

k;X
i) + � � u(Ti; a;Xi) for every player i and action a 2 A

	
:

This is the event that after observing the realized outcome of period k no player can

improve her payo¤by more than � through a unilateral revision of her period-k action.

The probability of this event is, PHS(k; �;�) = P
�
u(Ti;Ai

k;X
i) + � � u(Ti; a;Xi) for

every player i and action a
�
.

De�nition 6. Let � be a game skeleton and let � be a Markov strategy. We say

that period k is asymptotically (�; �)-stable under � if there exists some n0 such that

P(H(k; �)) > 1� �

in every n-player game with n > n0.

We proceed to provide bounds on the level of hindsight stability in natural classes

of large games. For this purpose, in addition to the earlier assumptions about the
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game skeleton, we now make an assumption about the modulus of continuity of the

payo¤ function. Let ! : [0;1) ! [0;1) be a continuous, monotone increasing

function with w(0) = 0. We say that the utility function u admits ! as a modulus of

continuity if ju(t; a; x)� u(t; a; x0)j � !(�(x; x0)) for all t 2 T; a 2 A, and x; x0 2 X,

where � is the metric on X. The special case of a Lipschitz payo¤ function with

constant L is described by the function !(d) = Ld.

The following lemma says that correct predictions imply hindsight stability.

Lemma 1. Fix r; � > 0. Let � be a Markov strategy of a game skeleton � in which

the payo¤ function u has a modulus of continuity !, and consider the random �-

play-path. For every period k, the event R(k; r; �) that players make (r; �) -correct

predictions in period k is contained in the event H(k; 2!(r) + �=(1� �)) that period

k is (2!(r) + �=(1� �))-stable.

The following theorem follows from Theorem 1 and Lemma 1:

Theorem 2. [Hindsight Stability] Fix a game skeleton � in which the payo¤ function

u has a modulus of continuity ! . Then for every �; � > 0, there exists an integer

K such that in every Markov equilibrium � and for every d > 0, all but at most K

periods are [2d+ 2Q�(!�1(d)) + 2�; Q�(!�1(d)) + �] asymptotically-stable.10

Under the theorems above we deduce the following examples.

Example 3 (Rounded-o¤ empirical distribution). Consider a game � in which the

reported outcome x is the realized empirical distribution of the population e, ran-

domly rounded o¤, up or down, to the nearest percentage. Then Q�(0:01) = 0. Let

10If the function ! is not invertible, then r = !�1(d) is de�ned in any way such that !(r) � d.
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r; �; � be arbitrarily small positive numbers; then there is a �nite number of periods

K such that:

(1) In all but the Kperiods, under any strategy � the players make correct pre-

dictions up to [r; �; �].

(2) If the payo¤ function is Lipschitz with constant L = 1 and � is a Markov

equilibrium, then all but K periods are (0:02 + 2�; �)-stable.

6. Cournot example: Price stability

In this example of an n-person Cournot production game, the state of nature

determines whether it is easy or di¢ cult to produce a certain good, and producers

are of two types: e¢ cient and ine¢ cient. At the beginning of every period, each one

of the producers chooses whether or not to produce a single unit of the good. The

total production determines the period�s price through a random inverse demand

function.

Let S = feasy; di�cultg denote the set of possible states equipped with a uniform

prior �0(easy) = �0(di�cult) = 1=2, and let T = fe�cient; ine�cientg denote the set

of players�types. Let the type-generating function � be given by

�(e�cientjeasy) = �(ine�cientjdi�cult) = 3=4; and

�(ine�cientjeasy) = �(e�cientj di�cult) = 1=4:

A player�s period production levels are described by the set of actions A = f0; 1g,

and a price x 2 R is the outcome of every period. The period price depends entirely

on the period�s total production, and not on the state of nature and the types.

Formally, for every s 2 S and empirical distribution of type-action pairs e 2 �(T �
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A), let �s;e = Normal(1=2 � r; �2), where r = e(easy; 1) + e( di�cult; 1) is the

proportion of players who produce the good. One interpretation in the n-player

game is that there are n buyers whose demand at price x is given by 1=2 � r + �,

where � � Normal(0; �2) is the same for all buyers. Another interpretation is that �

represents noisy traders who may either buy or sell the good.

The payo¤ function is given by u(t; 0; x) = 0 for every t 2 T and x 2 X and

u(t; 1; x) = x � (1=8)�t=ine�cient. These means that not producing results in zero

payo¤ and that per unit production cost is zero for an e¢ cient producer and 1/8 for

an ine¢ cient one.

The repeated game admits the following unique imagined-continuumMarkov equi-

librium: Let �k be the public belief about the state of nature at the beginning of

period k, computed (according to the imagined-continuum reasoning) by an outsider

who observes the prices but not the players�types and actions. We identify �k with

the probability assigned to s = easy, so �k 2 [0; 1]. Note that if the public belief is

�k, then the belief of every e¢ cient player is

�
(e�cient)
k =

3=4 � �k
3=4 � �k + 1=4(1� �k)

=
3�k

1 + 2�k
;

and the belief of every ine¢ cient players is

�
(ine�cient)
k =

�k
3� 2�k

:

The equilibrium strategies in the repeated game are de�ned by the following:

(1) When �k � (7 +
p
33)=16 = 0:796::, each e¢ cient player produces with prob

p = 4�k+2
8�k+1

(thus, under imagined-continuum reasoning, 4�k+2
8�k+1

of them produce)
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and the ine¢ cient players are idle. Here p is the solution to the equation:

�
(e�cient)
k 3=4 � p+ (1� �( e�cient)k )1=4 � p = 1=2;

so that the e¢ cient players expect a selling price of zero and zero pro�t. In

particular, when �k = 1, a proportion p = 2=3 of the e¢ cient players produce

and the ine¢ cient players are idle.

(2) When (35 �
p
649)=64 < �k < (7 +

p
33)=16, each e¢ cient player produces

with probability p and each ine¢ cient player produces with probability q,

where 0 < p; q < 1 are the unique solution to the following equations

�
(e�cient)
k (3=4 � p+ 1=4 � q) + (1� �(e�cient)k )(1=4 � p+ 3=4 � q) = 1=2

�
(ine�cient)
k (3=4 � p+ 1=4 � q) + (1� �(ine�cient)k )(1=4 � p+ 3=4 � q) = 3=8;

so that the e¢ cient players expect price 0 and the ine¢ cient players expect

price 1=8. For example, when � = 1=2, the strategies are p = 11=16 and

q = 3=16.

(3) When � � (35 �
p
649)=64 = 0:148:::, the e¢ cient players all produced and

the ine¢ cient players produce with probability q = (3�6�)=(18�16�). Here

q is the solution to the following equation:

�
(ine�cient)
k � (3=4 + 1=4 � q) + (1� �(e�cient)k ) � (1=4 + 3=4 � q) = 3=8;

so that the ine¢ cient player expects price 1=8 and zero pro�t. In this case

the e¢ cient players expect a positive pro�t.
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After each period the players update their beliefs using Bayes�formula:

�k+1 =
�k � exp (�(xk � (3=4pk + 1=4qk))2=2)

�k � exp (�(xk � (3=4pk + 1=4qk))2=2) + (1� �k) � exp (�(xk � (1=4pk + 3=4qk))2=2)

where pk and qk are the equilibrium strategy under �k, and xk is the outcome of

period k.

By Theorem 2 it follows that for every �; � > 0 and every d > 0, every period

except for a �nite number is asymptotically hindsight-stable at level (2d+2Q�(d) +

2�; Q�(d) + �). Assume, for example, that � = 0:01. Choosing d = 0:05, we get (by

item 2 in Example 2) QG(d) = 0:012 . Therefore, every period except for a �nite

number is asymptotically (0:11 + 2�; 0:012 + �)-stable.

Remark 3. Why is the equilibrium unique? Let � be the outsider belief about the

state of nature at the beginning of some period. Let p be the proportion of e¢ cient

players who produce at that period, and q the proportion of ine¢ cient players who

produce.

Under this pro�le the supplied quantity that the e¢ cient players expect is

�(e�cient)(3=4 � p+ 1=4 � q) + (1� �( e�cient))(1=4 � p+ 3=4 � q);

and the supplied quantity that the ine¢ cient players expect is

�(ine�cient)(3=4 � p+ 1=4 � q) + (1� �( ine�cient))(1=4 � p+ 3=4 � q):

Assume now by contradiction that (p; q) and (p0; q0) are two equilibrium pro�les and

that q > q0. The equilibrium condition implies that the supplied quantity that

the ine¢ cient players expect under (p; q) is weakly smaller than what they expect
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under (p0; q0). Because q > q0, this implies that p < p0, so that, again by the

equilibrium condition, the supplied quantity that the e¢ cient players expect under

(p; q) is weakly larger than under (p0; q0). This is a contradiction since the di¤erence

between the expected supplied quantities of the e¢ cient and ine¢ cient players is

monotone-increasing in p and monotone-decreasing in q.

Part 2. Big games with unobserved changing fundamentals

We next discuss preliminary observations about equilibrium models of big games

with unobserved changing fundamentals. There are several key questions about such

games, for example: (1) What is the process that governs the changes in fundamen-

tals, the time of changes and the selection of new states? (2) What is the information

that the players receive about the time of changes? (3) what is the information that

the players receive about the new states of fundamentals?

Assuming that the changes of fundamentals occure at random discrete times, 0 =

C0 < C1 < C2; ::: , the play of the big game consists of segments of periods [Ci; Ci+1)

during which the state of fundamentals is �xed, and in each such segment we have a

repeated big game with unknown state of fundamentals. We now proceed to discuss

how the Markov equilibria for such segments, from the earlier part of this paper,

may be used to construct equilibria for the multi-segment game. This construction

is limited to big repeated segment games in which the changes in fundamentals and

information is very simple. Nevertheless, it may o¤er an approach for research

dealing with more general cases.

In a repeated segment game the changes in fundamentals are due to exogenous iid

random shocks that are independent of the play, and when a change takes place the
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players are informed about it, but not about the new realized state of fundamen-

tals. More precisely, a repeated segment game is described by a pair (�; �) in which

� = (S; �0; T; � ; A;X; �; u) is a �xed multi-period stage game with �xed unknown

fundamentals as discussed earlier, and 1 > � > 0 describes the probability of change

at the end of every period of play.

The extensive form of the game is described recursively as follows: (i) Indepen-

dent of any past events, nature draws a random state of nature s according to the

distribution �0; it also independently draws player types by the distribution � s, and

privately informs the players of their realized types. (ii) The segment game � is

played repeatedly in successive periods as described earlier, but subject to the fol-

lowing modi�cation: At the end of every period, independent of the history, and with

probability �, the game restarts and with probability 1�� it continues. Following the

continue event, the play continues to the next period of the segment. But following

a restart event, the players are informed that the game has been restarted, and a

new segment starts with step (i) above.

Let � be a Bayesian Markov strategy of the stage game � , according to De�ni-

tion 3. Then � induces the following natural multi segment strategy: Initially and

after every change in fundamentals, the public belief is set to be �0 and players use

their current type when applying � throughout the segment. Even without giving

a formal de�nition of an equilibrium in the multi segment game, it is intuitively

clear that if � is an equilibrium in the stage game, then the induced strategy is

an equilibrium in the multi segment game. Our results from the previous part im-

ply that in every segment there is a bounded number K of periods which are not

hindsight-stable. If the probability of transition � is su¢ ceintly small then we get a
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low bound of � � K on the frequency of periods in the multi segment game which

are not hindsight stable.

Notice that the construction above with small � suggests that in big games we may

anticipate the emergence of stability cycles. Every new segment of play consists of

learning unstable periods, followed by many predictable stable periods played until

the next change of fundamentals.

The construction above may be extended to a broader class of multi segment

games, provided that the transitions to new segments are governed entirely by the

Markovian state of the segment and its equilibrium currently played.

Moving to more general models, we may view big games as large imperfectly

observed Bayesian stochastic games, in which the transition probability and the new

state depend on the empirical distribution of players, actions and on the current

state. This broader view gives rise to many questions for future research. A special

challenge are games in which players are not informed when fundamental changes

occure, they can only infere this by observing statistical changes in period outcomes.

We leave these issues to future research.

Part 3. Proofs

The main result of the paper �that asymptotic hindsight stability holds in all but

�nitely many chaotic learning periods �is proven in two steps.

Step 1 argues that the result holds in the imagined processes that describe the

beliefs of the players. Building on the result of Step 1, Step 2 shows that the result

holds in the real process.
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In Step 1, the intuition may be broken into two parts. First, relying on the

literature on merging (see Fudenberg and Levin [12], Sorin [36], and Kalai and

Lehrer [20, 21]) we argue that in an equilibrium of our model there is only a �-

nite number of learning periods in which the forecasted probability of the period

outcome is signi�cantly di¤erent from its real probability. In other words, the play-

ers�belief about the fundamental state s leads to approximately the same probability

distribution over the future outcomes as under the realized state s. One issue we

need to address in applying these results is that, in our multi player setup, players

with di¤erent types have di¤erent beliefs, and so may make mistakes in forecasts in

di¤erent periods. But we need to bound the number of periods in which some player

makes a forecasting mistake. To do that, we extend the previous learning result to

a multi player setup.

The second part of Step 1 is based on the following reasoning. If we assume that

the uncertainty in the determination of period outcomes is low, in the imagined

process the period outcomes under every state s are essentially deterministic. This

implies that in every non learning period the players learn to predict the outcomes

(and not just forecast their probabilities). When the predicted period outcome (on

which a player bases her optimal choice of an action) is correct, she has no reason

to revise her choice. Thus, in the imagined processes we have hindsight stability in

these non learning periods.

In Step 2, to argue that hindsight stability holds in all the non learning periods

in the real process, we rely on arguments developed in our companion paper [22].
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These arguments show that the probability of outcomes in the real process are ap-

proximately the same as their counterparts in the imagined process. Thus, the high

level of hindsight stability obtained in Step 1 also applies to the real process.

Section 7 gives a formal de�nition of the imagined play path: the incorrect one

computed in the minds of the players (recall Section 3.2). Section 8 presents the result

from our companion paper: when the number of players is large, the probabilities of

outcomes computed in the imagined process are close to the probabilities obtained

from the real process (recall Section 3.4). Section 9 presents a uniform merging

(learning) result: in an environment with many player types, each starting with a

di¤erent initial signal, there is a bound on the number of periods in which some types

update their beliefs. Section 10 connects the dots.

7. Imagined-continuum view

In this section we describe the imagined play path that justi�es the imagined-

continuum reasoning of Section 3.2. This is needed because the Bayesian updating

performed by the imagined-continuum players is done relative to this imagined play

path, and not relative to the real play path described in Section 3.4.

In order to distinguish between corresponding entities in the actual play path and

in the imagined play path, we denote the random variables that represent the out-

comes in the imagined play by ~X0; ~X1; : : : , and the random variables that represent

public beliefs by ~�0; ~�1; : : : .

Let � be a Markov strategy. An imagined random �-play-path is a collection�
S; ~T; ~X0; ~X1; : : : ) of random variables, representing the state of nature, type of a

representative player and outcomes, such that: the state of nature S is distributed
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according to �0 and conditional on the history of periods 0; : : : ; k � 1, the outcome
~Xk is drawn randomly according to the probability density function �S;dS; ~�k

, where

the imagined public beliefs ~�k are given by

~�0 = �0; and

~�k+1 = � ~�k; ~Xk
; for k � 0;

(7.1)

� is de�ned in (3.2); and ds;� for every state s and belief � is de�ned in (3.1).

In equations:

P (S = �) = �0;

P
�
~T = �jS

�
= �S;

P
�
~Xk = x

���S; ~T; ~X0; : : : ; ~Xk�1

�
= �S;dS; ~�k

(x);

(7.2)

The di¤erence between Equations (7.2) and the Equations (3.7) that de�ned the

actual random play path is that in the latter, the outcome is generated from the

random empirical types-actions distribution ek of n players, whereas in the former the

outcome is generated from dS; ~�k
. For this reason the beliefs ~�k are the conditional

probabilities over the state of nature of an observer who views the outcome process

~X0; ~X1; : : : , and ~�
(t)
k are the correct conditional probabilities over the state of nature

of a player of type T, i.e.,

~�k = P
�
S = �

��� ~X0; : : : ; ~Xk�1

�
; and

~�
(t)
k = P

�
S = �

���T = t; ~X0; : : : ; ~Xk�1

�(7.3)
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where for every t 2 T , ~�(t)
k is given by

~�
(t)
k (s) =

~�(s) � � s(t)P
s02S

~�(s0) � � s0(t)

as in (4.1). Similarly, the forecasts of the public observer and the players about the

next period outcome are correct in the imagined process:

�( ~�k; ~�k) = P
�
~Xk = �

��� ~X0; : : : ; ~Xk�1

�
; and

�( ~�
(t)
k ;
~�k) = P

�
~Xk = �

���~T = t; ~X0; : : : ; ~Xk�1

�
:

(7.4)

From (7.4) it follows that if � is an imagined-continuum equilibrium, then at every

round the players choose the optimal actions for the imagined beliefs:

(7.5) [�(t; ~�k)] � argmax
a
E
�
u(t; a; ~Xk)

���~T = t; ~X0; : : : ; ~Xk�1

�
;

for every period k and every player�s type t 2 T . As mentioned in Remark 2, in

our companion paper we de�ne the concept of imagined equilibrium (not necessarily

Markovian) using this property and prove that every equilibrium of this kind is

myopic.

8. Validation of the imagined view

We prove Theorem 1 using a proposition that couples a play path in the actual

game with an imagined play path that re�ects the players imagined-continuum rea-

soning. By coupling we mean that both processes are de�ned on the same probability

space. The coupling presented in Proposition 1 is such that when the number of play-

ers is large, the realization of the processes is with high probability the same. In par-

ticular, the forecasts about the outcome sequence made by the imagined-continuum
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reasoning are not far from the correct forecasts made by an observer who performs

the correct Bayesian calculation11. We prove Proposition 1 in our companion pa-

per12. See also Carmona and Podczeck [7, 8] and the reference therein for results of

similar spirit in a static (single period) game.

Proposition 1. Fix a game skeleton and a Markov strategy �. There exist random

variables S;Ti;Ai
k;Xk; ~Xk for i 2 N and k = 0; 1; : : : such that

� (S;Ti;Ai
k;X0; X1; : : : ) is a random �-play path of the repeated game.

� The outcome sequence S; ~X0; ~X1; : : : is an imagined random �-play path.

� For every k,

(8.1) P
�
X0 = ~X0; : : : ;Xk = ~Xk

�
> 1� C � k

r
log n

n
;

where C is a constant that depends only on the game skeleton.

9. A uniform merging theorem

The proof of Theorem 1 relies on the notion of merging. Roughly speaking, the

merging literature shows that if forecasts over a sequence of future outcomes are made

by a Bayesian agent whose belief contains some �grain of truth�(in a sense de�ned

by this literature) then the agent�s forecasts cannot be wrong in many periods. We

follow Sorin�s paper [36]. For our purpose there is a set of agents, each of whom

holds a belief that has some grain of truth, and we want to bound the number of

11In a sense, the proposition states that the incorrect imagined-continuum computations are vali-
dated by the observed outcomes. This idea is a similar to self-con�rming equilibrium [11] with two
exceptions: (i) Here the players may have an incorrect understanding of the game, not just of the
opponents�strategies. (ii) our validation is probabilistic.
12See Lemma 1 in that paper. The version of the lemma in that paper is more general than here
in that it does not assume that all players play the same Markov strategy and also allows arbitrary
(non Markovian) deviations of a player.
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periods in which at least one of these agents makes a wrong forecast. In principle,

di¤erent beliefs with a grain of truth may induce wrong forecasts in di¤erent periods.

Nevertheless, in this section we use Sorin�s result to show that we can still bound

the number of periods in which some agents make a wrong forecast. Proposition 2

essentially appears in Sorin�s paper. Proposition 3 is our generalization for a multi-

agent setup.

Let X be a Borel space of outcomes and P a probability distribution over XN.

For every x = (x0; x1; : : : ) 2 XN, we denote by Pk(x0; : : : ; xk�1) the forecast made

by P over the next period outcome conditioned on x0; : : : ; xk�1. Let S be a �nite

set of states and for every s 2 S, let P s 2 �(XN). For a belief � 2 �(S) let

P � =
P

s2S �(s)P
s 2 �(XN). Thus, P � is the belief over outcomes of a player with

a prior � over the states of nature.

Consider a probability space equipped with random variables S;X0;X1; : : : such

that

P(S = s) = �0 for every s 2 S; and

P(X0 = �;X1 = �; : : : j S = s) = P s

for every s 2 S.

For P;Q 2 �(XN) and � > 0 we denote by Dk;�(P;Q) the event that the forecast

about XK made by P and Q are di¤er by more than �, i.e.,

Dk;�(P;Q) = fkPk(X0; : : : ;Xk�1)�Qk(X0; : : : ;Xk�1)k > �g:

Here and later the norm is the total variation norm of signed measure. In terms of

density function this norm is the L1-norm.
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The following proposition is included in results that appear in Sorin [36] and

Neyman [30]. In order to keep the paper self-contained we include a proof following

Neyman�s argument.

Proposition 2. For every �; � > 0 there exists K = K(�; �) such that for every prior

belief �0 2 �(S) and every collection of distributions fP s 2 �(XN)js 2 Sg, in every

period k except at most K it holds that:

P
�
Dk;�

�
PS; P �0

��
> 1� �:

The meaning of the assertion in Proposition 2 is that if the state of nature is

randomized according to �0, then at period k , with high probability an agent who

does not observe the state of nature make correct forecast, as if she knew the realized

state of nature.

Proof. One has

1X
k=0

E


P Sk (X0; : : : ;Xx�1)� P �0k (X0; : : : ;Xx�1)



2 =
1X
k=0

E


P(Xk 2 � jS;X0; : : : ;Xk�1 )� P(Xk 2 � jX0; : : : ;Xk�1 )



2 �
2

1X
k=0

E DKL (P(Xk 2 � jS;X0; : : : ;Xk�1 );P(Xk 2 � jX0; : : : ;Xk�1 )) =

2
1X
k=0

E I (S;Xk jX0; : : : ;Xk�1 ) =

2
1X
k=0

(H(SjX0; : : : ;Xk�1)�H(SjX0; : : : ;Xk)) =

2 � (H(S)�H(SjX0;X1 : : : )) � 2H(S) � 2jSj log jSj:

(9.1)
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Here DKL denotes the Kullback-Leibler divergence between distributions, the �rst

inequality follows from Pinsker�s Inequality, I is the mutual information, and H is

the entropy. The assertion follows by choosing K = 2jSj log jSj=(�2�). �

We now turn to the main contribution of this section, which is a generalization

of Proposition 2 to a multi-agent setup, where the agents may have di¤erent beliefs

over state of nature S because they receive di¤erent private signals. A stochastic

signal is given by a function � : S ! [0; 1] , with the interpretation that an agent

observes the signal with probability �(s) if the state of nature is s. In our setup,

an agent of type t receives the stochastic signal � that is given by �(s) = � s(t). An

agent who has some prior � about S and receives a signal � updates her belief to

(9.2) �(�)(s) =
�(s) � �(s)P
s02S �(s

0)�(s0)
:

This is the same formula as (3.3) except that we use the abstract notation of a

stochastic signal. The posterior belief is underined when �(s) = 0. Finally, for � > 0,

let Z� = f� : S ! [�; 1]g be the set of stochastic signals with probability at least �

in every state. The following proposition is the main result of this section:

Proposition 3. For every �; �; � > 0, there exists K = K(�; �; �) such that for every

prior belief �0 2 �(S) and every collection of distributions fP s 2 �(XN)js 2 Sg, in

every period k except at most K one has:

P

 \
�2Z�

Dk;�

�
PS; P �

(�)
0

�!
> 1� �:

The meaning of the assertion in Proposition 3 is that if the state of nature is

randomized according to �0, then at period k , with high probability all agents who
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receive signals in Z� about the state of nature make simultaneously correct forecasts,

as if they knew the realized state of nature.

To prove Proposition 3, we will use the following claim, which is a generalization

of Cauchy-Schwarz Inequality jCov(X;Y)j �
p
Var(X) Var(Y ) to random variables

that assume values in a separable Banach space. For such variables the expectation

is the Bochner integral. The case we are interested in is when the random variable

� is an agent�s forecast, which is a probability distribution over X. The set of all

forecasts is a subset of the Banach space of �nite signed measure over X. 13

Claim 1. Let � be a random variable which assumes values in some Banach space

V , and let � be a real-valued random variable, both bounded. De�ne Cov(�; �) =

E��� E�E� 2 V . Then kCov(�; �)k �
p
Var(�) � Ek�� E�k2.

Proof. From the linearity of the expectation, it follows that

Cov(�;�) = E (� � E�) (�� E�)

Therefore, the following holds:

kCov(�;�)k � Ek (� � E�) (�� E�) k =

E (j� � E�j � k�� E�k) �
p
Var(�) � Ek�� E�k2;

13Recall that X is either countable or a subset of an Euclidean space, in which case we assume also
that the forecasts admit density, and view �(X) as a subset of the Banach space of �nite signed
measures which are absolutely continuous w.r.t. Lebesgue�s measure. In both case the norm is the
total variation norm, which equal the L1-norm over the corresponding densities (and, therefore,
separable).
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where the �rst inequality follows from Jensen�s inequality the and convexity of the

norm, the equality follows from properties of the norm, and the last inequality follows

from the Cauchy-Schwarz inequality. �

Proof of Proposition 3. Let 
 = �2��=8 andK = 2jSj log jSj=
 = 16jSj log jSj=(�2��).

From (9.1) it follows that for every period k except at most K of them, it holds that

(9.3) E


PSk (X0; : : : ;Xx�1)� P �0k (X0; : : : ;Xx�1)



2 < 
:
Let Fk be the sigma-algebra that is generated by X0; : : : ;Xk�1 and let

�k = P
S
k (X0; : : : ;Xx�1)

be the �(X)-valued random variable that represents the forecast about Xk of an

agent who knows the state of nature and has observed previous outcomes. Note that

the forecast about Xk of an agent who observes previous outcomes but does not

observe the state of nature is given by

P �0k (X0; : : : ;Xx�1) = E(�kjFk):

More generally, let � : S ! [0; 1] and let � = �(S). Then the forecast about Xk of

an agent who receives the signal � is given by:

(9.4) �
(�)
k = E(��kjFk)=E(�jFk):14

From (9.3)

E k�k � E(�kjFk)k
2 < 
:

14As in (9.2), the forecast is unde�ned on the event that E(�jFk). This event has probability 0
from the perspective of an agent who get the signal �
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We call periods k in which this inequality holds good periods. It follows that in a good

period k there exists an Fk -measurable event Gk and an event Hk (not necessarily

Fk-measurable) such that P(Gk) > 1� �=2;P(Hk) > 1� �=2 and

E
�
k�k � E(�kjFk)k

2
��Fk� < 2
=� on Gk, and(9.5)

k�k � E(�kjFk)k
2 < 2
=� on Hk:(9.6)

From the concavity of the square root function, Jensen�s inequality and (9.5), it

follows that

(9.7) E
�
k�k � E(�kjFk)k

��Fk� <p2
=�;
on Gk. From (9.4) it follows that

�
(�)
k � E(�kjFk) =

Cov (�;�k jFk )
E(�jFk)

Assume now that � 2 Z�, so that � � � � 1. Then

(9.8)

p
Var(�jFk)
jE(�jFk)j

�

q
E(�2jFk)
jE(�jFk)j

�
r
1

�
;

where the second inequality follows from Claim 2 below (conditioned on Fk). There-

fore, by Claim 1 (conditioned on Fk ), that

k�(�)k �E(�kjFk)k =
kCov (�;�k jFk ) k

jE( �jFk)j
�
p
Var(�jFk)
jE(�jFk)j

q
E
�
k�k � E(�kjFk)k2

��Fk� <r2

��
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on Gk, where the last inequality follows fram (9.8) and (9.5). From the last equation

and (9.6) it follows that

k�(�)k � �kk <
r
2


�
(1 + 1=

p
�) < �

on Gk \Hk. Therefore,

P
�
\�2Z�Dk;�

�
PS; P �

(�)
0

��
= P

�
\�2Z�fk�

(�)
k � �kk < �g

�
� P(Gk \Hk) > 1� �:

�

Claim 2. If � is a random variable such that � � � � 1 then E�2 � 1
�
(E�)2.

Proof.

E�2 � E� � 1

�
(E�)2

where the �rst inequality follows from � � 1 and the third from � � E�. �

10. Proof of Theorem 1

Claim 3. LetX be an X-valued random variable and let � 2 �(X) be the distribution

of X. Then for every r > 0,

P
�
�(B(X; r)) � 1�Q�(r)

�
� 1�Q�(r);

where Q�(r) is the concentration function of � given by (4.3), and B(X; r) is the ball

of radius r around X.

Proof. Let D1; D2; : : : be a subset of X such that diameter(Dn) � r and �(Dn) >

1 � Q�(r) � 1=n. Then the event X 2 Dn implies the event Dn � B(X; r), which
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implies the event �(B(X; r)) � 1�Q�(r)� 1=n. Therefore,

P
�
�(B(X; r)) � 1�Q�(r)� 1=n

�
� P(X 2 Dn) = �(Dn) > 1�Q�(r)� 1=n:

The assertion follows by taking the limit when n!1. �

Proof of Theorem 1. Consider the coupling S;Ti;Ai
k;Xk; ~Xk of the real and imag-

ined �-play paths given in Proposition 1. We prove that players make asymptotically

correct perdictions in the imagined play path and then use (8.1) to deduce that they

make correct predictions in the real play path.

We �rst prove that in the imagined game, players make correct forecasts, as if they

knew the state of nature. We use Proposition 3 where P s is the joint distribution

of ~X0; ~X1; : : : conditioned on S = s for every state s. Let K = K(�; 2�; �) =

4jSj log jSj=(�2��) as in Proposition 3, where � = min � s(t) and the minimum ranges

over all states s and all types t such that � s(t) > 0. Then it follows from Proposition 3

that

P
�


P( ~Xk = �j ~T = t; ~X0; : : : ; ~Xk�1)� P( ~Xk = �j~S; ~X0; : : : ; ~Xk�1)




 < 2� for every t 2 T� > 1��
for all periods except at most K of them. From the last equation, (7.4), and (7.2),

we deduce that in all good periods

(10.1) P
�


~�(t)k � � S;dS; ~�k




 < 2� for every t 2 T� > 1� �;
where ~�

(t)

k = �( ~�
(t)
k ;
~�k) is the �(X)-valued random variable that represents the

forecast of a player of type t about the outcome of period k, computed in the imagined

play path.
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From Claim 3 conditioned on S; ~X0; : : : ; ~Xk�1 and from (7.2), it follows that

P
�
�S;dS; ~�k

(B( ~Xk; r)) � 1�Q�(r)
�
� 1�Q�(r):

From the last inequality and (10.1), we deduce that

P
�
~�
(t)

k (B(
~Xk; r)) > 1�Q�(r)� � for all t 2 T

�
> 1�Q�(r)� �:15

All this was for the imagined play path. From Proposition 1 it now follows that

P
�
�
(t)
k (B(Xk; r)) > 1�Q�(r)� �

�
> 1�Q�(r)� �

for su¢ ciently large n, as desired. �

11. Proof of Theorem 2

Proof of Lemma 1. Let �(t)k be the �(X)-valued random variable that represents

the forecast of a player of type t about the outcome of period k computed under the

imagined reasoning. On R(k; r; �)

(11.1)

(1� �) (u(t; a;Xk)� !(r)) �
X
x

u(t; a; x) �
(t)
k (x) � (1� �) (u(t; a;Xk) + !(r)) + �

15We use the fact that for two distributions P;Q over X it holds that jP (B)�Q(B)j � kP �Qk=2
for every event B in X. Recall that the norm here is the total variation norm, which is the L1 norm
for densities.
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for every type t and action a. Therefore, on R(k; r; �)

u(t; b;Xk) �
1

1� �
X
x

u(t; b; x) �
(t)
k (x) + !(r) �

1

1� �
X
x

u(t; a; x) �
(t)
k (x) + !(r) � u(t; a;Xk) + 2!(r) + �=(1� �)

for every a 2 [�(t;�k)] and b 2 A, where the �rst inequality follows from (11.1), the

second from the equilibrium condition
P

x u(t; b; x) �
(t)
k (x) �

P
x u(t; a; x) �

(t)
k (x)

and the third from (11.1). �

Proof of Theorem 2. Let r = !�1(d) so that !(r) � d. By Theorem 1 there exists

an integer K such that, under every Markov strategy � and every r > 0, in all but

at most K periods it holds that

P(R(k; r;Q�(r) + �)) > 1� (Q�(r) + �):

By Lemma 1

fR(k; r;Q�(r)+�))g � fH(k; 2!(r)+(Q�(r)��)=(1�Q�(r)+�)g � fH(k; 2!(r)+2Q�(r)+2�):

It follows that

P
�
H(k; 2!(r) + 2Q�(r) + 2�)

�
> 1� (Q�(r) + �);

as desired. �
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