Partially Strategyproof Mechanisms for the Assignment Problem

Timo Mennle & Sven Seuken
Computation and Economics Research Group
Department of Informatics

Abstract

• We propose a new way of relaxing strategyproofness by only requiring mechanisms to be non-manipulable for a subset of all possible utility functions, namely those bounded away from

indifference. We construct hybrid mechanisms that make desirable and scalable trade-offs between efficiency and incentive properties, and we use this technique to design hybrids of RDS and PS.

3 ... which requires incentive/efficiency trade-offs.

Problem
State-
ment

2 Consider the problem of assigning students to schools ...

Research Question

4 How can we design assignment mechanisms that make desirable trade-offs between efficiency and incentives?

Research Idea

5 Introduce intermediate incentive concepts...

• <u>Partial Strategyproofness (PSP)</u>: require SP constraints to hold for a subset of the possible utility functions.

• <u>Uniformly Relatively Bounded Utility (URB)</u>: SP constraints must hold for utilities that are bounded away from indifference.

6 ... and introduce intermediate efficiency concepts.

- *g dominates f*:
 allocations resulting under *g*dominate those resulting under *f*.

 relax to
- *g imperfectly dominates f*: allocations resulting under *g* dominate those resulting under *f* whenever they are comparable.

Theory Results

Introduce hybrid mechanisms, ...

• *Prop. 1.* Hybrid mechanisms $h_{\beta}(f,g) = (1-\beta)f + \beta g$ are well-defined.

• *Prop. 2.* PSP on URB characterized by finitely many constraints.

• *Prop. 8.* If *g* imperfectly dominates *f*, then $h_{\beta}(f,g)$ imperfectly dominates *f*.

8 ... which preserve PSP, are computable, ...

• *Thm.* 1./*Cor.* 1. Given f SP and g weakly less varying than f, we have $\forall (r,B) \exists \beta > 0$: $h_g(f,g)$ is PSP on URB(r,B,m).

• *Prop. 3./Cor. 2.* For f SP, any mechanism g, bounds (r, B), and m objects, there exists a maximal value $\beta_{\max} > 0$ for which $h_{\beta}(f,g)$ is PSP on URB(r,B,m), and this β_{\max} is computable.

… and yield a hierarchy of manipulability and efficiency.

- *Prop.* 9./10. Given \overline{f} SP, g manipulable and weakly less varying than f, g imperfectly dominates f, $0 \le \beta < \beta' \le 1$, then
 - 1. $h_{\beta}(f,g)$ is intensely and strongly more manipulable than $h_{\beta}(f,g)$
- 2. $h_{\beta}(f,g)$ imperfectly dominates $h_{\beta}(f,g)$.

Instantiations

(ID) PS and RSD can be used to design interesting hybrids...

- *Thm 2*. PS is weakly less varying than RSD, i.e., whenever PS changes the allocation, so does RSD.
- *Cor. 3.* Given bounds (r, B), and a setting with m objects, there exists $\beta>0$ such that 1. $h_{\beta}(RSD,PS)$ is PSP on URB(r,B,m) 2. $h_{\beta}(RSD,PS)$ imperfectly dominates RSD.

The construction may fail when mixing RSD and Rank Value mechanisms.

• Prop. 11. There exist Rank Value mechanisms that are not weakly less varying than RSD.

... and the mixing factor can be high.

Maximal mixing factor β_{max} for hybrids of PS and RSD with 4 agents and 4 objects.

13 Future Research

- Derive reduction theorem to characterize PSP in terms of URB utility sets.
- Introduce
 intermediate
 efficiency concepts,
 based on weaker
 dominance notions.