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Stable marriages

Gale and Shapley (1962)
There are n men and m women, each of them having a preference
order on the members of the other gender. We call a marriage
scheme stable if there is no blocking pair: a man and women that
mutually prefer each other to their own partners (or he/she is
single).

Theorem (Gale-Shapley)

There always exists a stable matching, and it can be found with
the deferred acceptance algorithm.



Optimality-pessimality

We call a stable matching S male-optimal it if is preferred by all
men to any other stable matching: S ≥M S ′ for every stable
matching S ′. A stable matching S is male-pessimal if S ≤M S ′ for
every stable matching S ′.
Female-optimality and pessimality are defined similarly.

Theorem (Gale-Shapley)

The stable marriage scheme given by the Gale-Shapley algorithm is
male-optimal and female-pessimal.



College admissions in Hungary

Given n applicants: A1,A2, . . . ,An and m colleges: C1,C2, . . .Cm.
Every applicant has a strict preference order over the colleges she
applies to.
Every college assigns some score (an integer between 1 and M) to
each of its applicants.
Moreover, each college C has a quota q(C ) on admissible
applicants.
Each college has to declare a score limit. The score limit of college
Ci is ti .
The vector of declared score limits (t1, t2, . . . , tm) is called a score
vector
Each applicant will become a student on her most preferred college
where she has high enough score.



Properties of score vectors

Score vector (t1, t2, . . . tm) is valid if no college exceeds its quota
with these score limits.

Score vector (t1, t2, . . . tm) is critical if for every college either
tj = 0 or score vector (t1, t2, . . . , tj−1, tj − 1, tj+1, . . . , tm) is not
valid for Cj . A score vector t is stable if t is valid and critical.
An student-college many-to-one matching is score-stable if it can
be realized by a stable score vector.

Note that if applicants have different scores and the qouta is one
for every college, then we are back at the stable marriage problem.
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Score-decreasing algorithm

Theorem
For any finite set of applicants, colleges and set of applications, for
arbitrary positive scores of the applications there always exists a
stable score vector.

The are two natural algorithms to find a stable score vector:
1. The score-decreasing algorithm: colleges start on a valid
score vector tC := (M + 1, . . . ,M + 1) and they keep on decreasing
their score limits by one at a time, if this results in another valid
score vector. As soon as no college can decrease its score limit, the
score vector is stable. Let sC note the stable score vector we get.

Theorem
The score vector sC maximal among all stable score vectors, and
this assignment is applicant-pessimal.
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Score-increasing algorithm

2. The score-increasing algorithm: Colleges start with critical
score vector tA = (0, . . . , 0)) and keep on raising there score limits
by one, if they receive more students than their quota. As soon as
the score vector becomes valid, the score vector is also stable. Let
sA the stable score vector the score-increasing algorithm outputs.

Theorem
Score vector sA is the minimum of all stable score vectors.
Additionally it is applicant-optimal.



score-increasing algorithm

�
�
�
�
�@

@
@
@
@�

�
�
�
�

d
d
d

d
d

C1

(q=1)
C2

(q=1)

A1 A2 A3

0 0

1 2 2 1 1

� -

6

-
C1

C2

0 1 2 3
0

1

2

3

t

t
t

t
i



score-increasing algorithm

�
�
�
�
�@

@
@
@
@�

�
�
�
�

d
d
d

d
d

C1

(q=1)
C2

(q=1)

A1 A2 A3

1 0

1 2 2 1 1

� -

6

-
C1

C2

0 1 2 3
0

1

2

3

t

t
t

t
i



score-increasing algorithm

�
�
�
�
�

�
�
�
�
�@

@
@
@
@d

d
d

d
d

C1

(q=1)
C2

(q=1)

A1 A2 A3

2 0

1 2 2 1 1

� -

6

-
C1

C2

0 1 2 3
0

1

2

3

t

t
t

t
i

stable



Choice functions and properties

Choice function: F : 2E → 2E s.t. F(A) ⊆ A ∀A ⊆ E .

Monotone: A ⊆ B ⊆ E ⇒ F(A) ⊆ F(B).
Antitone: A ⊆ B ⊆ E ⇒ F(B) ⊆ F(A).
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Substitutability

A choice function F : 2E → 2E is substitutable if
A \ F(A) ⊆ B \ F(B) for any A ⊆ B.

When the set of opportunities expands, the refused contracts
expand. For example, if an applicant is refused out of 5 applicants,
he will be still refused when 5 more people apply.
We usually assume this proprety.
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IRC, LOB

Choice function F : 2E → 2E satisfies the IRC (Irrelevance of
rejected contracts) if F(A) ⊆ B ⊆ A⇒ F(A) = F(B).

My favorite subset of set A is F(A), and F(A) is a subset of B,
then this is also my favorite subset of B.
A choice function F is linear order based (LOB) if it can be
defined by a strict preference order over all subsets of E , such that
F(A) is best subset of A according to this order.
F(A) = max≺{X : X ⊆ A}.
Many articles define every choice function as linear order based.
Then it implies IRC too.
However, the choice funtion of colleges is usually not IRC. For
example, given two applicants: a, b, both of them with score 100,
and the quota of the college is 1.
G({a}) = {a}
G({b}) = {b}
G({a, b}) = ∅.
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Path-independence

A choice function F : 2E → 2E is path-independent if
F(A ∪ B) = F(F(A) ∪ B) holds for all subsets A and B of E .

Lemma (Fleiner)

A choice function F is path-independent if and only if F is IRC
and substitutable.

Theorem
If F path-independent then it is linear order based.
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Two-sided market

A two-sided market can be represented as a bipartite graph. On
one side, the applicants have a choice function F over the set of
contracts and the on the other side the colleges have a choice
function G over the contracts.
Let E be the set of all possible contracts.



Choice functions for college admissions

For subset X ⊆ E of applications F(X ) denotes the set of most
preferred applications of each applicant.
Similarly, G(X ) denotes the set of applications that colleges would
choose. From a given set of applicants, they choose the most
possible applicants by giving a score limit, not exceeding their
quota.
Choice function F of the applicants is IRC, but G for the colleges
is not. F and G are both substitutable.
Example:
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Pairwise stability

A contract-set S of E is called pairwise stable (or dominating
stable), if

1. F(S) = G(S) = S and

2. There is no contract x /∈ S such that x ∈ F(S ∪ {x}) and
x ∈ G(S ∪ {x})

This is a natural generalization of the original stable marriages.
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Group-stability

Hatfield-Milgrom (2005) used the following concept (for
many-to-one matchings), we will name it group-stable:
A set of contracts S ⊆ E is group-stable if

1. F(S) = G(S) = S and

2. there exists no college h and set of contracts X ′ 6= Gh(S) such
that X ′ = Gh(S ∪ X ′) ⊆ F(S ∪ X ′).

Lemma
If F and G are substitutable, and the market contains at most one
contract between a given college and student, then group-stability
and pairwise stability are equivalent.



3-stability

Subset S of E is 3-stable, if

1. F(S) = G(S) = S and

2. there exists subsets A and B of E , such that
F(A) = S = G(B) and A ∪ B = E , A ∩ B = S .

Pair (A,B) with this property is called an 3-stable pair, and S is an
3-stable core.
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Score-stability versus 3-stability

For a set of applications S , score-stablitity is not equivalent with
3-stability.
Example:
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Let A = S = {C2A1,C2A2} and B = E therefore
F(A) = G(B) = S ,A ∪ B = E ,A ∩ B = S . So S is 3-stable, and it
can be realized with score vector (1, 0). Although, (1, 0) is not
score-stable, if C1 lowers its limit to (0, 0), the admission changes
to C1A1,C2A2 which is still valid.



Score-stability versus 3-stability

For a set of applications S , score-stablitity is not equivalent with
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Determinants

We say D : 2E → 2E is a determinant of choice function F if
F(A) = A ∩ D(A) for every A ⊆ E .

Lemma
Choice function F : 2E → 2E is substitutable if and only if there
exists an antitone determinant D of F .

For every substitutable F , there is a canonical determinant, which
is minimal among all possible antitone determinant of F .

DF (A) := {e ∈ E : e ∈ F(A ∪ {e})}



4-stability

Subset S of E is 4-stable, if

1. F(S) = G(S) = S and

2. there exists subsets A and B of E , such that
F(A) = S = G(B) and A ∩ B = S , DF (A) = B, DG (B) = A
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Connection between stability concepts

Theorem
If F and G are substitutable and IRC, 3-part, 4-part and
dominating stability are equivalent.

both F ,G are IRC
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Connection between stability concepts 2

If there are no parallel contracts, i.e. there is only one possible
contract between a college and an applicant.

both F ,G are IRC
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Partial order over stable marriages

There is a partial order over marriage schemes:
S ≥M S ′, if every men got at least as good wife in matching S as
in S ′. Similarly S ≥W S ′, if every woman got at least as good
husband in S , compared to S ′.

Lemma (Knuth)

If everyone has a strict preference order, if S ≥M S ′ then S ′ ≥W S .

Theorem (Conway)

Let S1 and S2 be two stable marriage schemes, and every man
picks the better one out of this wives in S1 and S2. Then we
obtain a stable matching.

Corollary:

Theorem (Conway)

The stable marriages form a distributive lattice for the partial order
≥M .
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Lattice properties

Theorem (Tarski’s fixed point theorem)

Let L be complete lattice, and f : L → L be a monotone function
on L. Then Lf is a nonempty, complete lattice on the restricted
partial order where Lf = {x ∈ L : f (x) = x} is the set of fixed
points of f .



Lattice of 3-stable cores

Given a choice function F , define a partial order on contract sets:
S ′ ≤F S if F(S ∪ S ′) = S .

Theorem (Blair)

If F ,G : 2E → 2E are substitutable, IRC choice functions, then the
3-stable cores form a lattice for partial order ≤F .

Recall that if both sides have IRC choice functions, 3-stability,
4-stability and dominating stability are equivalent, so all of them
form a lattice.



Lattice properties of 4-stability

Theorem (Generalization of Blair’s theorem)

If F and G are substitutable and F is IRC (G doesn’t need to be
IRC), the 4-stable sets form a nonempty complete lattice for
partial order ≤F .



Lattice property of score-stability

If the market has no parallel contracts, 4-stability and
score-stability are equivalent.

Theorem
If F and G are substitutable, and F is IRC, score-stable solutions
form a lattice.



Conclusion

definition always exists lattice
dominating no no
group no no
3-stable yes yes
4-stable yes yes
score-stable yes yes



Usefulness of determinants

We have a choice funtion over a lattice F : L → L. For example
every agent plays tennis with the others, and wants to allocate her
free time. If she have 3 possible partners, and her free time all
together is 1 hour, the choice function is F : [0, 1]3 → [0, 1]3.
A choice function F : L → L is substitutable if and only if there
exists an antitone determinant D of F .



Thank you for your attention!


