
Going Beyond the Traditional

Complexity Analysis

Ronald de Haan

Technische Universität Wien



What will I talk about?

I Investigating computational complexity issues in
computational social choice using tools capable of
subtler analysis leads to more useful insights

I Classical complexity theory has a negative bias

I This is problematic when using intractability as a barrier

I What to watch out for when using finer tools to reduce this
negative bias

[ToC]



What’s Next?

Overview

Complexity in Computational Social Choice

Negative Bias of Complexity Theory

What to do?

Summary

[ToC]



Complexity in Computational Social Choice

I Computational complexity is an important aspect of research
in computational social choice

I To know in what cases some algorithmic approaches are
possible

I e.g., efficient algorithms for computing the winner of an
election

I To know in what cases some algorithmic approaches are
impossible

I e.g., using intractability results as a barrier against strategic
behavior

[ToC]



General Methodology of Computational Complexity

I Theoretical, mathematical framework to classify how hard it is
to solve computational problems

I distinguish tractable from intractable

I To do this productively, an abstract model is used:

I Inputs are strings over some alphabet

I Consider how the running time grows with the input size n

I For each n, count the maximum over any input of size n

I Theoretical distinction between P and NP-hard (or worse)

I Idea: this distinction corresponds by and large to the border
between tractable and intractable in practice

[ToC]



What’s Next?

Overview

Complexity in Computational Social Choice

Negative Bias of Complexity Theory

What to do?

Summary

[ToC]



Intractability Results can be Overly Negative

I Intractability results (e.g., NP-hardness) indicate that all
algorithms require exponential time in the worst case

I i.e., there is no algorithm that is efficient for all inputs

I There could still be an algorithm that works efficiently for a
large subclass of inputs

I In fact, for many NP-complete problems, important classes of
inputs have been found with efficient algorithms

I Vertex Cover: given a graph G = (V ,E ), is there a subset of
vertices of size m that touches each edge?

I If m is small, this can be solved, even for large graphs

[ToC]



Example: Manipulation in Voting

I Consider voting using Single Transferable Vote (STV)

I The problem of manipulation is NP-complete

I So: each algorithm to compute a manipulation policy takes
time 2Ω(n)

I However, this could give a false sense of safety!

I Strategic manipulation is solvable in time m! · poly(n),
where m is the number of candidates

I Whenever m is small, this is feasible

[ToC]



The Need for Stronger Intractability Results

I Negative bias in intractability results:

I Good when looking for algorithms that are (guaranteed to be)
efficient

I When using intractability to argue that strategic behavior is
obstructed, it is naive to disregard this bias

I Classical theory of computational complexity gives
weak intractability results

I We need stronger intractability results to argue for
complexity barriers against strategic behavior

[ToC]



The Need for Stronger Intractability Results.. in pictures

•

•

•

•

•

•

• •

•

•

•

Imagine these are all possible inputs

Intuitively, stronger intractability results leave less space for
undiscovered efficient algorithms

[ToC]



The Need for Stronger Intractability Results.. in pictures

•

•

•

•

?

?

? •

•

•

•

Suppose you care about the ?’s

Intuitively, stronger intractability results leave less space for
undiscovered efficient algorithms

[ToC]



The Need for Stronger Intractability Results.. in pictures

•

•

•

•

?

?

? •

•

•

•

Classical intractability..

Intuitively, stronger intractability results leave less space for
undiscovered efficient algorithms

[ToC]



The Need for Stronger Intractability Results.. in pictures

•

•

•

•

?

?

? •

•

•

•

does not rule out an efficient algorithm for a subset of inputs

Intuitively, stronger intractability results leave less space for
undiscovered efficient algorithms

[ToC]



The Need for Stronger Intractability Results.. in pictures

•

•

•

•

?

?

? •

•

•

•

Stronger intractability results can rule out such an algorithm

Intuitively, stronger intractability results leave less space for
undiscovered efficient algorithms

[ToC]



The Need for Stronger Intractability Results.. in pictures

•

•

•

•

?

?

? •

•

•

•

But careful.. there could always be algorithms
for more restricted classes of inputs

Intuitively, stronger intractability results leave less space for
undiscovered efficient algorithms

[ToC]



The Need for Stronger Intractability Results.. in pictures

•

•

•

•

?

?

? •

•

•

•

Intuitively, stronger intractability results leave less space for
undiscovered efficient algorithms

[ToC]



A typical pitfall

I When modelling, you consider an abstraction of the scenario
you care about

I Typically, you ‘err’ on the side of generality

I Example: judgment aggregation, with issues ϕ1, . . . , ϕn

represented by arbitrary propositional formulas

I In this setting, intractability results are everywhere!

I These results might not say much if your scenario contains
logical relations expressible by statements of the form:
(if a, then b)

[ToC]



What’s Next?

Overview

Complexity in Computational Social Choice

Negative Bias of Complexity Theory

What to do?

Summary

[ToC]



Going Beyond Showing NP-Hardness

I Investigate the possibilities of more intricate methods offered
by (theoretical) computer science, e.g.:

I Investigate the problem for fragments of inputs

I Consider approximation algorithms

I Use the framework of parameterized complexity theory

I Encode problem inputs into SAT, and use SAT solvers

I Employ typical-case complexity

I Empirically investigate how algorithmic methods perform

[ToC]



Parameterized Complexity in a Nutshell

I Traditional complexity theory measures running time only in
terms of the input size n

I To reduce the worst-case negative bias, take into account
more than just this number n:

I Parameterized complexity measures running times in terms of
input size n and a parameter k

I The parameter captures structure that is present in the input

I the smaller k , the more structure

I Fixed-parameter tractability: running time of f (k) · poly(n),
for some (computable) function f

I (Idea: worst-case over inputs of size n and with small k)

[ToC]



People have been parameterizing...

I Many parameterized complexity results in computational
social choice

I parameters, e.g.: number of candidates, number of voters

I Example: manipulation of STV with a small number of
candidates

I Relativizes the NP-hardness result for manipulation of STV

I Solvable in time m! · poly(n), where m is the number of
candidates

I Whenever m is small, this is feasible

[ToC]



But stay on your toes!

I Remember from the picture:

I Whenever you have intractability for a ‘small circle’..

I there could be an efficient algorithm for an ‘even smaller circle’

I Parameterized intractability results still have a negative bias

I Keep trying to ‘reduce the circle’ as much as possible for your
application:

I Add another parameter

I Restrict to a fragment of the inputs

I . . .

[ToC]



Example: Manipulating the Kemeny JA Procedure

I Strategic manipulation: can an individual report an insincere
judgment to obtain a better group outcome?

I For the Kemeny JA procedure, this is Σp
2-complete

I (worse than NP-complete..)

I Even when parameterized by # of issues, the problem remains
intractable

I But, with if-then logical constraints, manipulation becomes
tractable

[ToC]



Stricter Parameters

I For tractability results, loose (or general) parameters—as few
as possible together—are ideal

[ToC]



Stricter Parameters

•

•

•

•

?

?

? •

•

•

•

[ToC]



Stricter Parameters

I For tractability results, loose (or general) parameters—as few
as possible together—are ideal

I For intractability results, combinations of as many as possible
strict parameters are ideal

[ToC]



Stricter Parameters

•

•

•

•

?

?

? •

•

•

•

[ToC]



Stricter Parameters

I For tractability results, loose (or general) parameters—as few
as possible together—are ideal

I For intractability results, combinations of as many as possible
strict parameters are ideal

I To get useful, strong intractability results, consider parameters
that severely restrict structure, e.g.:

I treewidth (and others, e.g., clique-width)

I backdoors

I distance to single-peakedness or unidimensional alignment

I maximum distance between any two votes

I maximum range of candidates (in voting)
[ToC]



Strict Parameters for the Example of Kemeny in JA

I Example of judgment aggregation

I restriction: all issues are propositional variables

I restriction: integrity constraint contains no additional variables

I parameter: maximum distance h between any two individual
judgments

I parameter: number p of individuals

I Intractability in this constrained setting is much more
powerful than

I But: even in this case, further restrictions could lead to
efficient algorithms

[ToC]



Combining Various Methods

I Negative theoretical results rule out one type of algorithmic
approach

I Idea of strong negative results: try to rule out approaches that
are as specialized as possible

I Investigate combinations of algorithmic methods

I For example: combination of parameterized algorithms and
SAT encodings

[ToC]



SAT Encodings

I General idea:

I encode your problem input as an instance of SAT

I use a SAT solving algorithm to solve the problem

I Applicable for problems in NP

I No worst-case guarantees

I Works well in many practical settings

[ToC]



Possibilities for the Example of Kemeny in JA

I Previous example: strategic manipulation in judgment
aggregation for the Kemeny procedure

I parameter: number of issues

I Parameterized intractability result: no efficient parameterized
algorithm for this case

I But: can be solved in fixed-parameter tractable time by
encoding into a small number of SAT instances

[ToC]



The Holy Grail

I Study your application setting

I Consider all algorithmic methods (that we know about)

I Give theoretical (intractability) results that these methods are
not possible in your application

I Give experimental evidence that these methods really do not
work well

I (Compare this to just showing NP-hardness)

[ToC]



What’s Next?

Overview

Complexity in Computational Social Choice

Negative Bias of Complexity Theory

What to do?

Summary

[ToC]



Summary

I Investigating computational complexity issues in
computational social choice using tools capable of
subtler analysis leads to more useful insights

I Classical complexity theory has a negative bias

I This is problematic when using intractability as a barrier

I Use finer tools to reduce this negative bias

I Be much more demanding when using negative results as a
barrier!!

[ToC]



Thanks!

Questions?

[ToC]



Table of Contents

Overview

Complexity in Computational Social Choice

Negative Bias of Complexity Theory

What to do?

Summary

[ToC]


	Overview
	Complexity in Computational Social Choice
	Negative Bias of Complexity Theory
	What to do?
	Summary

