# Multiwinner Election Rules: Axioms and Applications 

Piotr Skowron<br>piotr.skowron@cs.ox.ac.uk

University of Oxford

Based on my joint works with: Markus Brill, Edith Elkind, Piotr Faliszewski, Martin Lackner, Jean-François Laslier, Dominik Peters, Arkadii Slinko and Nimrod Talmon

## Multiwinner Elections

Setting:

- Set of candidates $C=\left\{c_{1}, \ldots, c_{m}\right\}$,
- Collection of voters $V=\left(v_{1}, \ldots, v_{n}\right)$,
- Each voter has preferences over candidates.


## Goal:

- Select $K$ candidates that would satisfy the voters most.


## Preferences as Rankings



$$
\begin{aligned}
& v_{4}:\left\{\begin{array}{l}
\text { a } \\
h
\end{array}\right\}
\end{aligned}
$$

## Multiwinner Elections: the Challenge

## The Goal

Select $K$ candidates that would satisfy the voters most.

## Multiwinner Elections: the Challenge

## The Goal

Select $K$ candidates that would satisfy the voters most.

## The Problem

It is absolutely unclear how to do that.

## Applications: Shortlisting



Goal: We want to select a collection of high-quality individuals (here, voters are, e.g., reviewers).

## Applications: Facility location



Goal: Selecting locations for set of facilities (e.g., hospitals, fire stations, markets, etc.).

## Applications: Selecting a Representative Body, e.g., a Parliament


ini

ini


Goal: We want to select a set of candidates that well represent the population.

## Multiwinner Elections: the Challenge

## The Question

How should we select candidates for each of these applications?

## Multiwinner Election Rules：Approval Voting

－A voter $i$ approves a set of candidates $A_{i}$ ．
－The score of each candidate is the number of voter who approve him or her．
－The $K$ candidates with the highest score form a winning committee．

$$
\begin{aligned}
& V_{3}:\{t\} \\
& V_{4}:\left\{\begin{array}{l}
\text { 昜 }
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{score}\left({ }^{(0)}\right)=2 \\
& \text { score }\left(\frac{b}{6}\right)=4 \\
& \text { score }\left(\frac{l}{f}\right)=4 \\
& \text { score(t) }=3 \\
& \text { score }\left(\frac{\text { 采 }}{f}\right)=1
\end{aligned}
$$

## Multiwinner Election Rules：PAV

－A voter $i$ approves a set of candidates $A_{i}$ ．
－Satisfaction of voter $i$ from committee $S$ is $\sum_{i=1}^{\left|S \cap A_{i}\right|} \frac{1}{i}$ ．
－The committee with the highest total satisfaction wins．

$$
\begin{aligned}
& V_{2}:\{\text { 在藘 }\} \\
& V_{3}:\{1\} \\
& V_{4}:\left\{\frac{h}{f}\right\} \\
& V_{5} \text { : }\{\text { 是表表 }\} \\
& \operatorname{satisfaction}\left(V_{1}\right)=1 \\
& \operatorname{satisfaction}\left(V_{2}\right)=1+1 / 2+1 / 3 \\
& \operatorname{satisfaction}\left(V_{3}\right)=1+1 / 2 \\
& \operatorname{satisfaction}\left(V_{4}\right)=0 \\
& \operatorname{satisfaction}\left(V_{5}\right)=1+1 / 2 \\
& \text { total satisfaction }=55 / 6
\end{aligned}
$$

## Multiwinner Election Rules：Chamberlin－Courant

－A voter $i$ approves a set of candidates $A_{i}$ ．
－Voter $i$ approves committee $S$ if $S \cap A_{i} \neq \emptyset$ ．
－The committee approved by most voters wins．

$$
S=\left\{\frac{d}{x}\right\}
$$

$$
\operatorname{satisfaction}\left(V_{1}\right)=1
$$

$$
\operatorname{satisfaction}\left(V_{2}\right)=1
$$

$$
\operatorname{satisfaction}\left(V_{3}\right)=1
$$

$$
\operatorname{satisfaction}\left(V_{4}\right)=1
$$

$$
\operatorname{satisfaction}\left(V_{5}\right)=1
$$

$$
\text { total satisfaction }=5
$$

$$
\begin{aligned}
& V_{1}:\left\{\begin{array}{c}
\text { 为 }
\end{array}\right\} \\
& V_{2}:\{\text { 在騂 }\} \\
& V_{3}:\left\{\begin{array}{l}
\text { 为 }\}
\end{array}\right. \\
& V_{4}:\left\{\begin{array}{l}
h \\
h
\end{array}\right.
\end{aligned}
$$

## Multiwinner Election Rules: Chamberlin-Courant

Under the Chamberlin-Courant rule each voter has a single representative within a committee. We wish to have a committee for which as many voters as possible approve their representatives.

$$
S=\{\hat{k}\}
$$



## Multiwinner Election Rules：Monroe

The same as Chamberlin－Courant but we require each committee member to represent at most $\lceil n / k\rceil$ voters．

$$
\begin{aligned}
& S=\{\hat{k}\}
\end{aligned}
$$

$$
\begin{aligned}
& \longrightarrow \quad \text { 黄 }
\end{aligned}
$$

$$
\begin{aligned}
& \longrightarrow \quad \text { 产 } \\
& V_{3}:\{\text { 戠 }\} \\
& \longrightarrow \quad \text { 是 } \\
& V_{4}:\left\{\begin{array}{l}
k \\
k
\end{array}\right. \\
& V_{5}:\left\{\begin{array}{c}
\text { 或 }
\end{array}\right\}
\end{aligned}
$$

total satisfaction $=4$

## Multiwinner Elections: the Challenge

## The First Problem

It is unclear how to select $K$ candidates that would satisfy the voters most.

But also ...

## Multiwinner Elections: the Challenge

## The First Problem

It is unclear how to select $K$ candidates that would satisfy the voters most.

But also ...

## The Second Problem

It is unclear what the aforementioned rules really do.

## What do Multiwinner Rules do?: the Apportionment (Party-List) Profiles

Assume we can partition:

- the set of candidates $C$ into pairwise disjoint sets $C_{1}, \ldots, C_{p}$, and
- the set of voters $V$ into pairwise disjoint groups $V_{1}, \ldots, V_{p}$. so that:
- the voters from $V_{i}$ approve the candidates from $C_{i}$.

The Apportionment (Party-List) Profiles: PAV

| 50 voters: | $C_{1}$ | $C_{2}$ | C3 | C4 | C5 | $C_{6}$ | $C_{7}$ | $C_{8}$ | C9 | $C_{10}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 30 voters: | $C_{11}$ | $C_{12}$ | ${ }^{\text {c }} 13$ | $C_{14}$ | $C_{15}$ | $C_{16}$ | $C_{17}$ | ${ }^{1} 18$ | $C_{19}$ | $\mathrm{C}_{20}$ |
| 10 voters: | $C_{21}$ | $C_{22}$ | $C_{23}$ | $C_{24}$ | $C_{25}$ | $C_{26}$ | $C_{27}$ | $C_{28}$ | $C_{29}$ | $\mathrm{C}_{30}$ |
| 10 voters: | $C_{31}$ | $C_{32}$ | $C_{33}$ | $C_{34}$ | $C_{35}$ | $C_{36}$ | $C_{37}$ | $\mathrm{C}_{38}$ | $C_{39}$ | $C_{40}$ |

## The Apportionment (Party-List) Profiles: PAV

| 50 voters: | $c_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ | $c_{5}$ | $c_{6}$ | $c_{7}$ | $c_{8}$ | $c_{9}$ | $c_{10}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 30 voters: | $c_{11}$ | $c_{12}$ | $c_{13}$ | $c_{14}$ | $c_{15}$ | $c_{16}$ | $c_{17}$ | $c_{18}$ | $c_{19}$ | $c_{20}$ |
| 10 voters: | $c_{21}$ | $c_{22}$ | $c_{23}$ | $c_{24}$ | $c_{25}$ | $c_{26}$ | $c_{27}$ | $c_{28}$ | $c_{29}$ | $c_{30}$ |
| 10 voters: | $c_{31}$ | $c_{32}$ | $c_{33}$ | $c_{34}$ | $c_{35}$ | $c_{36}$ | $c_{37}$ | $c_{38}$ | $c_{39}$ | $c_{40}$ |

$$
S=\emptyset
$$

$$
\begin{aligned}
& \operatorname{score}\left(c_{1}\right)=50 \\
& \operatorname{score}\left(c_{11}\right)=30 \\
& \operatorname{score}\left(c_{21}\right)=10 \\
& \operatorname{score}\left(c_{31}\right)=10
\end{aligned}
$$

## The Apportionment (Party-List) Profiles: PAV

| 50 voters: | $\mathrm{C}_{1}$ | $C_{2}$ | C3 | C4 | C5 | C6 | $C_{7}$ | $C_{8}$ | C9 | $C_{10}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 30 voters: | $C_{11}$ | $C_{12}$ | $\mathrm{C}_{13}$ | $C_{14}$ | $C_{15}$ | $C_{16}$ | $C_{17}$ | ${ }^{\text {c } 18}$ | $C_{19}$ | $\mathrm{C}_{20}$ |
| 10 voters: | $C_{21}$ | $C_{22}$ | $\mathrm{C}_{23}$ | $\mathrm{C}_{24}$ | $C_{25}$ | $C_{26}$ | $C_{27}$ | $\mathrm{C}_{28}$ | $\mathrm{C}_{29}$ | $\mathrm{C}_{30}$ |
| 10 voters: | $C_{31}$ | ${ }_{\text {C32 }}$ | C33 | C34 | C35 | $C_{36}$ | ${ }^{\text {c }} 37$ | ${ }^{\text {C38 }}$ | C39 | $\mathrm{C}_{40}$ |

## The Apportionment (Party-List) Profiles: PAV

| 50 voters: | $c_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ | $c_{5}$ | $c_{6}$ | $c_{7}$ | $c_{8}$ | $c_{9}$ | $c_{10}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 30 voters: | $c_{11}$ | $c_{12}$ | $c_{13}$ | $c_{14}$ | $c_{15}$ | $c_{16}$ | $c_{17}$ | $c_{18}$ | $c_{19}$ | $c_{20}$ |
| 10 voters: | $c_{21}$ | $c_{22}$ | $c_{23}$ | $c_{24}$ | $c_{25}$ | $c_{26}$ | $c_{27}$ | $c_{28}$ | $c_{29}$ | $c_{30}$ |
| 10 voters: | $c_{31}$ | $c_{32}$ | $c_{33}$ | $c_{34}$ | $c_{35}$ | $c_{36}$ | $c_{37}$ | $c_{38}$ | $c_{39}$ | $c_{40}$ |

$$
S=\left\{c_{1}\right\}
$$

$$
\begin{aligned}
& \operatorname{score}\left(c_{2}\right)=50 / 2=25 \\
& \operatorname{score}\left(c_{11}\right)=30 \\
& \operatorname{score}\left(c_{21}\right)=10 \\
& \operatorname{score}\left(c_{31}\right)=10
\end{aligned}
$$

## The Apportionment (Party-List) Profiles: PAV

| 50 voters: | $\mathbf{c}_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ | $c_{5}$ | $c_{6}$ | $c_{7}$ | $c_{8}$ | $c_{9}$ | $c_{10}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 30 voters: | $\mathbf{c}_{11}$ | $c_{12}$ | $c_{13}$ | $c_{14}$ | $c_{15}$ | $c_{16}$ | $c_{17}$ | $c_{18}$ | $c_{19}$ | $c_{20}$ |
| 10 voters: | $c_{21}$ | $c_{22}$ | $c_{23}$ | $c_{24}$ | $c_{25}$ | $c_{26}$ | $c_{27}$ | $c_{28}$ | $c_{29}$ | $c_{30}$ |
| 10 voters: | $c_{31}$ | $c_{32}$ | $c_{33}$ | $c_{34}$ | $c_{35}$ | $c_{36}$ | $c_{37}$ | $c_{38}$ | $c_{39}$ | $c_{40}$ |

$$
S=\left\{c_{1}, c_{11}\right\}
$$

The Apportionment (Party-List) Profiles: PAV

| 50 voters: | $\mathbf{c}_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ | $c_{5}$ | $c_{6}$ | $c_{7}$ | $c_{8}$ | $c_{9}$ | $c_{10}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 30 voters: | $\mathbf{c}_{11}$ | $c_{12}$ | $c_{13}$ | $c_{14}$ | $c_{15}$ | $c_{16}$ | $c_{17}$ | $c_{18}$ | $c_{19}$ | $c_{20}$ |
| 10 voters: | $c_{21}$ | $c_{22}$ | $c_{23}$ | $c_{24}$ | $c_{25}$ | $c_{26}$ | $c_{27}$ | $c_{28}$ | $c_{29}$ | $c_{30}$ |
| 10 voters: | $c_{31}$ | $c_{32}$ | $c_{33}$ | $c_{34}$ | $c_{35}$ | $c_{36}$ | $c_{37}$ | $c_{38}$ | $c_{39}$ | $c_{40}$ |

$$
S=\left\{c_{1}, c_{11}\right\}
$$

$$
\begin{aligned}
& \operatorname{score}\left(c_{2}\right)=50 / 2=25 \\
& \operatorname{score}\left(c_{11}\right)=30 / 2=15 \\
& \operatorname{score}\left(c_{21}\right)=10 \\
& \operatorname{score}\left(c_{31}\right)=10
\end{aligned}
$$

## The Apportionment (Party-List) Profiles: PAV

| 50 voters: | $\mathbf{c}_{\mathbf{1}}$ | $\mathbf{c}_{\mathbf{2}}$ | $\mathbf{c}_{\mathbf{3}}$ | $\mathbf{c}_{\mathbf{4}}$ | $c_{5}$ | $c_{6}$ | $c_{7}$ | $c_{8}$ | $c_{9}$ | $c_{10}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 30 voters: | $\mathbf{c}_{\mathbf{1 1}}$ | $\mathbf{c}_{\mathbf{1 2}}$ | $c_{13}$ | $c_{14}$ | $c_{15}$ | $c_{16}$ | $c_{17}$ | $c_{18}$ | $c_{19}$ | $c_{20}$ |
| 10 voters: | $c_{21}$ | $c_{22}$ | $c_{23}$ | $c_{24}$ | $c_{25}$ | $c_{26}$ | $c_{27}$ | $c_{28}$ | $c_{29}$ | $c_{30}$ |
| 10 voters: | $c_{31}$ | $c_{32}$ | $c_{33}$ | $c_{34}$ | $c_{35}$ | $c_{36}$ | $c_{37}$ | $c_{38}$ | $c_{39}$ | $c_{40}$ |
| $S=\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{11}, c_{12}\right\}$ |  |  |  |  |  |  |  |  |  |  |

## The Apportionment (Party-List) Profiles: PAV

| 50 voters: | $\mathbf{c}_{\mathbf{1}}$ | $\mathbf{c}_{\mathbf{2}}$ | $\mathbf{c}_{\mathbf{3}}$ | $\mathbf{c}_{\mathbf{4}}$ | $c_{5}$ | $c_{6}$ | $c_{7}$ | $c_{8}$ | $c_{9}$ | $c_{10}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 30 voters: | $\mathbf{c}_{\mathbf{1 1}}$ | $\mathbf{c}_{\mathbf{1 2}}$ | $c_{13}$ | $c_{14}$ | $c_{15}$ | $c_{16}$ | $c_{17}$ | $c_{18}$ | $c_{19}$ | $c_{20}$ |
| 10 voters: | $c_{21}$ | $c_{22}$ | $c_{23}$ | $c_{24}$ | $c_{25}$ | $c_{26}$ | $c_{27}$ | $c_{28}$ | $c_{29}$ | $c_{30}$ |
| 10 voters: | $c_{31}$ | $c_{32}$ | $c_{33}$ | $c_{34}$ | $c_{35}$ | $c_{36}$ | $c_{37}$ | $c_{38}$ | $c_{39}$ | $c_{40}$ |
| $S=\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{11}, c_{12}\right\}$ |  |  |  |  |  |  |  |  |  |  |

$$
\begin{aligned}
& \operatorname{score}\left(c_{5}\right)=50 / 5=10 \\
& \operatorname{score}\left(c_{13}\right)=30 / 3=10 \\
& \operatorname{score}\left(c_{21}\right)=10 \\
& \operatorname{score}\left(c_{31}\right)=10
\end{aligned}
$$

## The Apportionment (Party-List) Profiles: PAV

| 50 voters: | $\mathbf{c}_{\mathbf{1}}$ | $\mathbf{c}_{\mathbf{2}}$ | $\mathbf{c}_{\mathbf{3}}$ | $\mathbf{c}_{\mathbf{4}}$ | $\mathbf{c}_{\mathbf{5}}$ | $c_{6}$ | $c_{7}$ | $c_{8}$ | $c_{9}$ | $c_{10}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 30 voters: | $\mathbf{c}_{\mathbf{1 1}}$ | $\mathbf{c}_{\mathbf{1 2}}$ | $\mathbf{c}_{\mathbf{1 3}}$ | $c_{14}$ | $c_{15}$ | $c_{16}$ | $c_{17}$ | $c_{18}$ | $c_{19}$ | $c_{20}$ |
| 10 voters: | $\mathbf{c}_{\mathbf{2 1}}$ | $c_{22}$ | $c_{23}$ | $c_{24}$ | $c_{25}$ | $c_{26}$ | $c_{27}$ | $c_{28}$ | $c_{29}$ | $c_{30}$ |
| 10 voters: | $\mathbf{c}_{\mathbf{3 1}}$ | $c_{32}$ | $c_{33}$ | $c_{34}$ | $c_{35}$ | $c_{36}$ | $c_{37}$ | $c_{38}$ | $c_{39}$ | $c_{40}$ |
|  |  |  |  | $\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5} c_{11}, c_{12}, c_{13}, c_{21}, c_{31}\right\}$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

## The Apportionment (Party-List) Profiles: Monroe

| 10 voters: | $c_{1}$ | $c_{2}$ | $c_{3}$ | $C_{4}$ | $C_{5}$ | $c_{6}$ | $C_{7}$ | $\mathrm{C}_{8}$ | C9 | $C_{10}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 voters: | $c_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ | $C_{5}$ | $c_{6}$ | $c_{7}$ | $\mathrm{C}_{8}$ | $c_{9}$ | $c_{10}$ |
| 10 voters: | $c_{1}$ | $c_{2}$ | $c_{3}$ | $C_{4}$ | $C_{5}$ | $c_{6}$ | $c_{7}$ | $\mathrm{C}_{8}$ | $c_{9}$ | $c_{10}$ |
| 10 voters: | $c_{1}$ | $c_{2}$ | $c_{3}$ | $C_{4}$ | $C_{5}$ | $\mathrm{c}_{6}$ | $c_{7}$ | $\mathrm{C}_{8}$ | $c_{9}$ | $c_{10}$ |
| 10 voters: | $c_{1}$ | $c_{2}$ | $c_{3}$ | $C_{4}$ | $C_{5}$ | $c_{6}$ | $c_{7}$ | $c_{8}$ | $c_{9}$ | $c_{10}$ |
| 10 voters: | $C_{11}$ | $c_{12}$ | $c_{13}$ | $\mathrm{C}_{14}$ | $c_{15}$ | $c_{16}$ | $c_{17}$ | $c_{18}$ | $C_{19}$ | $c_{20}$ |
| 10 voters: | $c_{11}$ | $c_{12}$ | $c_{13}$ | $c_{14}$ | $c_{15}$ | $c_{16}$ | $c_{17}$ | $c_{18}$ | $c_{19}$ | $c_{20}$ |
| 10 voters: | $c_{11}$ | $c_{12}$ | $c_{13}$ | $c_{14}$ | $\mathrm{c}_{15}$ | $c_{16}$ | $c_{17}$ | $c_{18}$ | $c_{19}$ | $c_{20}$ |
| 10 voters: | $\mathrm{c}_{21}$ | $c_{22}$ | $\mathrm{C}_{23}$ | $\mathrm{C}_{24}$ | $\mathrm{C}_{25}$ | $\mathrm{C}_{26}$ | $c_{27}$ | $\mathrm{C}_{28}$ | $C_{29}$ | $C^{2}$ |
| 10 voters: | $C_{31}$ | $C_{32}$ | $C_{33}$ | $C_{34}$ | $C_{35}$ | $C_{36}$ | $C_{37}$ | $C_{38}$ | $C_{39}$ | $\mathrm{C}_{40}$ |
| $K=10 \quad n / K=10$ |  |  |  |  |  |  |  |  |  |  |

## The Apportionment (Party-List) Profiles: Monroe

| 10 voters: | $\mathrm{c}_{1}$ | $C_{2}$ | $C_{3}$ | $C_{4}$ | $C_{5}$ | $C_{6}$ | $C_{7}$ | $\mathrm{C}_{8}$ | $C_{9}$ | $C_{10}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 voters: | $c_{1}$ | $c_{2}$ | $c_{3}$ | $C_{4}$ | $C_{5}$ | $c_{6}$ | $C_{7}$ | $\mathrm{C}_{8}$ | $C_{9}$ | $c_{10}$ |
| 10 voters: | $c_{1}$ | $c_{2}$ | $\mathrm{C}_{3}$ | $\mathrm{C}_{4}$ | $C_{5}$ | $c_{6}$ | $c_{7}$ | $\mathrm{c}_{8}$ | $\mathrm{C}_{9}$ | $c_{10}$ |
| 10 voters: | $c_{1}$ | $c_{2}$ | $\mathrm{C}_{3}$ | $\mathrm{C}_{4}$ | $C_{5}$ | $c_{6}$ | $c_{7}$ | $\mathrm{c}_{8}$ | $\mathrm{C}_{9}$ | $c_{10}$ |
| 10 voters: | $c_{1}$ | $c_{2}$ | $C_{3}$ | $C_{4}$ | $C_{5}$ | $c_{6}$ | $c_{7}$ | $\mathrm{C}_{8}$ | $C_{9}$ | $c_{10}$ |
| 10 voters: | $c_{11}$ | $\mathrm{C}_{12}$ | $\mathrm{C}_{13}$ | $c_{14}$ | $c_{15}$ | $c_{16}$ | $c_{17}$ | $c_{18}$ | $\mathrm{C}_{19}$ | $\mathrm{c}_{20}$ |
| 10 voters: | $c_{11}$ | $\mathrm{c}_{12}$ | $c_{13}$ | $c_{14}$ | $c_{15}$ | $c_{16}$ | $c_{17}$ | $c_{18}$ | $c_{19}$ | $c_{20}$ |
| 10 voters: | $c_{11}$ | $\mathrm{c}_{12}$ | $c_{13}$ | $c_{14}$ | $c_{15}$ | $c_{16}$ | $c_{17}$ | $c_{18}$ | $c_{19}$ | $c_{20}$ |
| 10 voters: | $c_{21}$ | $c_{22}$ | $c_{23}$ | $c_{24}$ | $c_{25}$ | $c_{26}$ | $c_{27}$ | $c_{28}$ | $c_{29}$ | $\mathrm{C}_{3}$ |
| 10 voters: | $c_{31}$ | $C_{32}$ | $C_{3}$ | $\mathrm{C}_{34}$ | $C_{35}$ | ${ }^{\text {c }} 3$ | $C_{37}$ | $\mathrm{C}_{38}$ | $C_{39}$ | $\mathrm{C}_{40}$ |
| $K=10$ |  |  |  |  |  |  |  |  |  |  |

## The Apportionment (Party-List) Profiles: Monroe

| 10 voters: | $\mathrm{c}_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ | $C_{5}$ | $c_{6}$ | $c_{7}$ | $C_{8}$ | C9 | $c_{10}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 voters: | $c_{1}$ | $\mathrm{c}_{2}$ | $c_{3}$ | $C_{4}$ | $\mathrm{C}_{5}$ | $C_{6}$ | $c_{7}$ | $\mathrm{C}_{8}$ | $C_{9}$ | $c_{10}$ |
| 10 voters: | $C_{1}$ | $C_{2}$ | $c_{3}$ | $C_{4}$ | $C_{5}$ | $c_{6}$ | $c_{7}$ | $\mathrm{c}_{8}$ | $\mathrm{C}_{9}$ | $c_{10}$ |
| 10 voters: | $c_{1}$ | $c_{2}$ | $c_{3}$ | $C_{4}$ | $C_{5}$ | $\mathrm{C}_{6}$ | $c_{7}$ | $c_{8}$ | $c_{9}$ | $C_{10}$ |
| 10 voters: | $c_{1}$ | $c_{2}$ | $c_{3}$ | $C_{4}$ | $C_{5}$ | $c_{6}$ | $c_{7}$ | $\mathrm{C}_{8}$ | $c_{9}$ | $c_{10}$ |
| 10 voters: | $\mathrm{C}_{11}$ | $\mathrm{C}_{12}$ | $c_{13}$ | $\mathrm{C}_{14}$ | $\mathrm{C}_{15}$ | $c_{16}$ | $c_{17}$ | $c_{18}$ | $C_{19}$ | $c_{20}$ |
| 10 voters: | $c_{11}$ | $c_{12}$ | $c_{13}$ | $c_{14}$ | $c_{15}$ | $c_{16}$ | $c_{17}$ | $c_{18}$ | $c_{19}$ | $c_{20}$ |
| 10 voters: | $c_{11}$ | $c_{12}$ | $c_{13}$ | $c_{14}$ | $c_{15}$ | $c_{16}$ | $c_{17}$ | $\mathrm{C}_{18}$ | $c_{19}$ | $c_{20}$ |
| 10 voters: | $c_{21}$ | $c_{22}$ | $\mathrm{C}_{2}$ | $C_{24}$ | $\mathrm{C}_{25}$ | $c_{26}$ | $C_{27}$ | $c_{28}$ | $c_{29}$ | $c_{30}$ |
| 10 voters: | $c_{31}$ | $C_{32}$ | $\mathrm{C}_{3}$ | $C_{34}$ | $C_{35}$ | $c_{36}$ | $C_{37}$ | $C_{38}$ | $C_{39}$ | $\mathrm{C}_{40}$ |
| $K=10 \quad n / K=10$ |  |  |  |  |  |  |  |  |  |  |

## The Apportionment (Party-List) Profiles: Monroe

| 10 voters: | $\mathrm{c}_{1}$ | $c_{2}$ | C3 | $c_{4}$ | $C_{5}$ | ${ }_{6}$ | $c_{7}$ | $\mathrm{C}_{8}$ | $\mathrm{C}_{9}$ | $C_{10}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 voters: | $c_{1}$ | $\mathrm{C}_{2}$ | $c_{3}$ | $c_{4}$ | $\mathrm{C}_{5}$ | $c_{6}$ | $c_{7}$ | $\mathrm{C}_{8}$ | $\mathrm{C}_{9}$ | $c_{10}$ |
| 10 voters: | $c_{1}$ | $C_{2}$ | $\mathrm{C}_{3}$ | $\mathrm{C}_{4}$ | $\mathrm{C}_{5}$ | $\mathrm{C}_{6}$ | $c_{7}$ | $\mathrm{C}_{8}$ | $\mathrm{C}_{9}$ | $c_{10}$ |
| 10 voters: | $c_{1}$ | $c_{2}$ | $\mathrm{C}_{3}$ | $\mathrm{C}_{4}$ | $\mathrm{C}_{5}$ | $\mathrm{C}_{6}$ | ${ }^{C 7}$ | $\mathrm{C}_{8}$ | $\mathrm{C}_{9}$ | $C_{10}$ |
| 10 voters: | $c_{1}$ | $C_{2}$ | $\mathrm{C}_{3}$ | $\mathrm{C}_{4}$ | $\mathrm{C}_{5}$ | $\mathrm{C}_{6}$ | $C_{7}$ | $\mathrm{C}_{8}$ | $\mathrm{C}_{9}$ | $\mathrm{C}_{10}$ |
| 10 voters: | $c_{11}$ | $c_{12}$ | $c_{13}$ | $c_{14}$ | $C_{15}$ | $c_{16}$ | $c_{17}$ | $c_{18}$ | $c_{19}$ | $\mathrm{c}_{20}$ |
| 10 voters: | $c_{11}$ | $c_{12}$ | $c_{13}$ | $c_{14}$ | $c_{15}$ | $c_{16}$ | $c_{17}$ | $c_{18}$ | $c_{19}$ | $c_{20}$ |
| 10 voters: | $c_{11}$ | $c_{12}$ | $c_{13}$ | $c_{14}$ | $c_{15}$ | $c_{16}$ | $c_{17}$ | $c_{18}$ | $c_{19}$ | $c_{20}$ |
| 10 voters: | $c_{21}$ | $c_{22}$ | $c_{23}$ | $c_{24}$ | $\mathrm{c}_{25}$ | $c_{26}$ | $c_{27}$ | $\mathrm{C}_{28}$ | $c_{29}$ | $\mathrm{C}_{3}$ |
| 10 voters: | $c_{31}$ | $c_{32}$ | $\mathrm{C}_{3}$ | $c_{34}$ | $C_{35}$ | $C_{36}$ | $C_{37}$ | $C_{38}$ | $C_{39}$ | $\mathrm{C}_{40}$ |
| $K=10 \quad n / K=10$ |  |  |  |  |  |  |  |  |  |  |

## The Apportionment (Party-List) Profiles: Monroe



The Apportionment (Party-List) Profiles: Monroe


## The Apportionment (Party-List) Profiles: Chamberlin-Courant

| 10 voters: | $\mathrm{C}_{1}$ | $C_{2}$ | $C_{3}$ | $C_{4}$ | $C_{5}$ | $c_{6}$ | $C_{7}$ | $\mathrm{C}_{8}$ | $\mathrm{C}_{9}$ | $c_{10}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 voters: | $\mathrm{C}_{1}$ | $c_{2}$ | $\mathrm{C}_{3}$ | $C_{4}$ | $C_{5}$ | $C_{6}$ | $C_{7}$ | $\mathrm{C}_{8}$ | $C_{9}$ | $c_{10}$ |
| 10 voters: | $\mathrm{C}_{1}$ | $c_{2}$ | $C_{3}$ | $C_{4}$ | $C_{5}$ | $C_{6}$ | $c_{7}$ | $\mathrm{C}_{8}$ | $C_{9}$ | $c_{10}$ |
| 10 voters: | $\mathrm{C}_{1}$ | $\mathrm{C}_{2}$ | $\mathrm{C}_{3}$ | $\mathrm{C}_{5}$ | $\mathrm{C}_{5}$ | $C_{6}$ | $C_{7}$ | $\mathrm{C}_{8}$ | $\mathrm{C}_{9}$ | $C_{10}$ |
| 10 voters: | $\mathrm{C}_{1}$ | $\mathrm{C}_{2}$ | $\mathrm{C}_{3}$ | $C_{4}$ | $C_{5}$ | $C_{6}$ | $\mathrm{C}_{7}$ | $\mathrm{C}_{8}$ | $\mathrm{C}_{9}$ | $C_{10}$ |
| 10 voters: | $\mathrm{C}_{11}$ | $C_{12}$ | $\mathrm{Cl}_{13}$ | $C_{14}$ | $C_{15}$ | $C_{16}$ | $C_{17}$ | $\mathrm{C}_{18}$ | $\mathrm{C}_{19}$ | $\mathrm{C}_{20}$ |
| 10 voters: | $\mathrm{C}_{11}$ | $C_{12}$ | $C_{13}$ | $C_{14}$ | $C_{15}$ | $C_{16}$ | $c_{17}$ | $\mathrm{C}_{18}$ | $C_{19}$ | $\mathrm{C}_{20}$ |
| 10 voters: | $\mathrm{C}_{11}$ | $C_{12}$ | $\mathrm{C}_{13}$ | $\mathrm{C}_{14}$ | $C_{15}$ | $C_{16}$ | $C_{17}$ | $\mathrm{C}_{18}$ | $\mathrm{C}_{19}$ | $\mathrm{C}_{20}$ |
| 10 voters: | $\mathrm{C}_{21}$ | $\mathrm{C}_{22}$ | $\mathrm{C}_{23}$ | $\mathrm{C}_{24}$ | $\mathrm{C}_{25}$ | $\mathrm{C}_{26}$ | $\mathrm{C}_{27}$ | $\mathrm{C}_{28}$ | $\mathrm{C}_{29}$ | $\mathrm{C}_{30}$ |
| 10 voters: | $\mathrm{C}_{31}$ | $\mathrm{C}_{32}$ | $\mathrm{C}_{33}$ | $\mathrm{C}_{34}$ | $C_{35}$ | $\mathrm{C}_{36}$ | $\mathrm{C}_{37}$ | $\mathrm{C}_{38}$ | $\mathrm{C}_{39}$ | $C_{40}$ |
| $K=10$ |  |  |  |  |  |  |  |  |  |  |

PAV $\longrightarrow$

Monroe $\longrightarrow$
d'Hondt method

Hamilton method

## The Apportionment (Party-List) Profiles

## Party-List Profiles

Party-List preferences probably do not exist in "nature". Thus, the property of apportionment gives us "too much freedom".

## The Apportionment (Party-List) Profiles

## Party-List Profiles

Party-List preferences probably do not exist in "nature". Thus, the property of apportionment gives us "too much freedom".

## Theorem

Proportional Approval Voting is the only approval-based rule that satisfies symmetry, consistency, continuity and proportionality.

## See Martin Lackner's Poster!



Piotr Skowron

D'Hondt Proportionality

| N1 | N2 | N3 |
| :---: | :---: | :---: |
| ioii | i ${ }^{\text {bi }}$ | iii |
| ¢ip | 187 | 131 |
| ¢ipi |  | ili |
| ¢ifi |  |  |

Consider a situation where voters belong to one of four parties $N_{1}, \ldots, N_{4}$ and parties have disjoint sets of candidates. We want to fill 10 committee seats.

|  | $N_{1}$ | $N_{2}$ | $N_{3}$ | $N_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\left\|N_{\mathrm{i}}\right\| / 1$ | 9 | 21 | 28 | 42 |
| $\left\|N_{\mathrm{i}}\right\| / 2$ | 4.5 | $\mathbf{1 0 . 5}$ | 14 | 21 |
| $N_{\mathrm{i}} / / 3$ | 3 | 7 | 13 | 14 |
| $\mid N_{\mathrm{i}} / / 4$ | 2.25 | 5.25 | 7 | 10.5 |
| $\mid N_{\mathrm{i}} / / 5$ | 1.8 | 4.2 | 5.6 | 8.4 |

An ABC (winner) rule satisfies D'Hondt proportionality if D'Hondt proportional committees are selected in party-list profiles.

Main technical tool

```
    An axiomatic characterization of
```

    committee counting functions
    A committee counting function $f(x, y)$ gives the utility of an approval vote with $x$ approved candidates in the committee and $y$ approved candidates in total.
$f(x, y)$ defines a voting rule by maximizing the sum of utilities. Note that PAV is an example with $f(x, y)=\sum_{i=1}^{x} 1$

Main technical result (relies on Skowron, Faliszewski, Slinko 2016): An ABC rule is a committee counting rule If and only if it satisfies symmetry, consistency, Pareto efficiency, and continuity

Pareto efficiency. An ABC rule $\mathcal{F}$ is Pareto efficient if for each $W_{1}, W_{2} \in \mathscr{P}_{k}(C)$ and each $A \in \mathcal{A}(C, V)$ where for every vote $v \in V$ we have $A(v) \cap W_{1} \subseteq A(v) \cap W_{2}$, it holds that $W_{2} \succeq_{\mathcal{F}(A)} W_{1}$

## What do Voting Rules do?: Another Approach



## See Edith Elkind's Poster!

## What Do Multiwinner Voting Rules Do? An Experiment Over the Two-Dimensional Euclidean Domain

 elkind\&cs.ox.ac.uk, faliezewdagh.edu.pl, jean-francois.laslier@ens.fr, piotr.Ekowronacs.ox.ac.ulk,
University of Oxford, TV a.Elinkodauckland.ac.nz, ninrodtalmon77 ggnail, con
The University of Aurkland § Weizmamn Institute of Science

## Experimental Setup

In each experiment, we sample 200 voters and 200 candidates according to one of the 4 distributions: Gaussian, uniform on disc, uniform on square, and a mix of four Gaussians. We then select a 20 -member committee according to a given multwinner rule. We repeat the experiment 10000 times for each voting rule. For each (distribution, voting rule) pair, we provide two mages: a histogram (left) and a sample committee (right). The histograms show how often winners from a given location were selected; the higher color intensity corresponds to higher frequency. The first row shows the distributions themselves Our results are useful for deciding which voting rules are suitable for popular applications of multiwinner voting, such as parliamentary elections, portfolio selection, or shortisting (see paper).


## How about shortlisting?

## Committee Monotonicity

Assume that:

- for size $K$ the rule selects a committee $S$,
- for size $K+1$ the rule selects a committee $S^{\prime}$, then it should hold that $S \subset S^{\prime}$.


## How about shortlisting?

## Committee Monotonicity

Assume that:

- for size $K$ the rule selects a committee $S$,
- for size $K+1$ the rule selects a committee $S^{\prime}$, then it should hold that $S \subset S^{\prime}$.



## How about shortlisting?

## Committee Monotonicity

Assume that:

- for size $K$ the rule selects a committee $S$,
- for size $K+1$ the rule selects a committee $S^{\prime}$, then it should hold that $S \subset S^{\prime}$.



## How about shortlisting?

## Committee Monotonicity

Assume that:

- for size $K$ the rule selects a committee $S$,
- for size $K+1$ the rule selects a committee $S^{\prime}$, then it should hold that $S \subset S^{\prime}$.



## How about shortlisting?

## Committee Monotonicity

Assume that:

- for size $K$ the rule selects a committee $S$,
- for size $K+1$ the rule selects a committee $S^{\prime}$, then it should hold that $S \subset S^{\prime}$.



## How about shortlisting?

## Committee Monotonicity

Assume that:

- for size $K$ the rule selects a committee $S$,
- for size $K+1$ the rule selects a committee $S^{\prime}$, then it should hold that $S \subset S^{\prime}$.



## Proportional rankings

| 50 voters: | $a_{1}$ | $a_{2}$ | $a_{3}$ | $a_{4}$ | $a_{5}$ | $a_{6}$ | $a_{7}$ | $\ldots$ | $a_{100}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 30 voters: | $b_{1}$ | $b_{2}$ | $b_{3}$ | $b_{4}$ | $b_{5}$ | $b_{6}$ | $b_{7}$ | $\ldots$ | $b_{100}$ |
| 10 voters: | $c_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ | $c_{5}$ | $c_{6}$ | $c_{7}$ | $\ldots$ | $c_{100}$ |
| 10 voters: | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ | $d_{5}$ | $d_{6}$ | $d_{7}$ | $\ldots$ | $d_{100}$ |

$$
a_{1} \succ a_{2} \succ a_{3} \succ a_{4} \succ a_{5} \succ a_{6} \succ a_{7} \succ \ldots
$$

## Proportional rankings

| 50 voters: | $a_{1}$ | $a_{2}$ | $a_{3}$ | $a_{4}$ | $a_{5}$ | $a_{6}$ | $a_{7}$ | $\ldots$ | $a_{100}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 30 voters: | $b_{1}$ | $b_{2}$ | $b_{3}$ | $b_{4}$ | $b_{5}$ | $b_{6}$ | $b_{7}$ | $\ldots$ | $b_{100}$ |
| 10 voters: | $c_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ | $c_{5}$ | $c_{6}$ | $c_{7}$ | $\ldots$ | $c_{100}$ |
| 10 voters: | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ | $d_{5}$ | $d_{6}$ | $d_{7}$ | $\ldots$ | $d_{100}$ |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  | $a_{1} \succ b_{1} \succ a_{2} \succ a_{3} \succ b_{2} \succ a_{4} \succ c_{1} \succ \ldots$ |  |  |  |  |  |  |  |  |

## Proportional rankings

| 50 voters: | $a_{1}$ | $a_{2}$ | $a_{3}$ | $a_{4}$ | $a_{5}$ | $a_{6}$ | $a_{7}$ | $\ldots$ | $a_{100}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 30 voters: | $b_{1}$ | $b_{2}$ | $b_{3}$ | $b_{4}$ | $b_{5}$ | $b_{6}$ | $b_{7}$ | $\ldots$ | $b_{100}$ |
| 10 voters: | $c_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ | $c_{5}$ | $c_{6}$ | $c_{7}$ | $\ldots$ | $c_{100}$ |
| 10 voters: | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ | $d_{5}$ | $d_{6}$ | $d_{7}$ | $\ldots$ | $d_{100}$ |



## Proportional rankings

| 50 voters: | $a_{1}$ | $a_{2}$ | $a_{3}$ | $a_{4}$ | $a_{5}$ | $a_{6}$ | $a_{7}$ | $\ldots$ | $a_{100}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 30 voters: | $b_{1}$ | $b_{2}$ | $b_{3}$ | $b_{4}$ | $b_{5}$ | $b_{6}$ | $b_{7}$ | $\ldots$ | $b_{100}$ |
| 10 voters: | $c_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ | $c_{5}$ | $c_{6}$ | $c_{7}$ | $\ldots$ | $c_{100}$ |
| 10 voters: | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ | $d_{5}$ | $d_{6}$ | $d_{7}$ | $\ldots$ | $d_{100}$ |

$$
a_{1} \succ b_{1} \succ a_{2} \succ a_{3} \succ b_{2} \succ a_{4} \succ c_{1} \succ \ldots
$$

## Proportional rankings

| 50 voters: | $a_{1}$ | $a_{2}$ | $a_{3}$ | $a_{4}$ | $a_{5}$ | $a_{6}$ | $a_{7}$ | $\ldots$ | $a_{100}$ |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 30 voters: | $b_{1}$ | $b_{2}$ | $b_{3}$ | $b_{4}$ | $b_{5}$ | $b_{6}$ | $b_{7}$ | $\ldots$ | $b_{100}$ |
| 10 voters: | $c_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ | $c_{5}$ | $c_{6}$ | $c_{7}$ | $\ldots$ | $c_{100}$ |
| 10 voters: | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ | $d_{5}$ | $d_{6}$ | $d_{7}$ | $\ldots$ | $d_{100}$ |
|  |  | $a_{1} \succ b_{1} \succ a_{2} \succ a_{3} \succ b_{2} \succ a_{4} \succ c_{1} \succ \ldots$. |  |  |  |  |  |  |  |

## Proportional rankings



## Proportional rankings

## $\kappa$-group representation

Let $\kappa(\alpha, \lambda)$ be a function from $((0,1] \cap \mathbb{Q}) \times \mathbb{N}$ to $\mathbb{N}$. A ranking $r$ provides $\kappa$-group representation ( $\kappa-G R$ ) for profile $P$ if for all rational $\alpha \in(0,1]$, all $\lambda \in \mathbb{N}$, and all voter groups $N^{\prime} \subseteq N$ that are $(\alpha, \lambda)$-significant in $P$ it holds that

$$
\operatorname{avg}\left(N^{\prime}, r_{\leq \kappa(\alpha, \lambda)}\right) \geq \lambda
$$

A ranking rule $f$ satisfies $\kappa$-group representation ( $\kappa$-GR) if $f(P)$ provides $\kappa$-group representation for every profile $P$.

## Proportional rankings

- $\alpha$ : the size of the group of voters $N^{\prime}$.
- $\lambda$ : the average number of alternatives approved by voters from $N^{\prime}$.
- $\kappa(\alpha, \lambda)$ : how far we need to go down the ranking to obtain the average number of approved candidates equal to $\lambda$.

Phragmén's rule $\longrightarrow$

$$
\begin{gathered}
\kappa(\alpha, \lambda)=\left\lceil\frac{5 \lambda}{\alpha^{2}}+\frac{1}{\alpha}\right\rceil \\
\kappa(\alpha, \lambda)=\left\lceil\frac{2(\lambda+1)^{2}}{\alpha^{2}}\right\rceil \\
\kappa(\alpha, \lambda)=\left\lceil\frac{p^{\lambda+1}}{\alpha(p-1)}\right\rceil
\end{gathered}
$$

Sequential PAV $\longrightarrow$
p-geometric rule $\longrightarrow$

## Conclusions

Analysis of the properties of rules allow us to:

- better understand the rules,
- better understand the properties,
- understand applicability of rules.


## See the Posters!

## An Axiomatic Characterization of

 Proportional Approval Voting (PAV) f(hartin. lacknor.piotr. akowron \}acs. ox. ac. UXX
Univerity of Oxford, UK

## Proportional Approval Voting (PAV)

We want to choose 2 out 4 candidates $(a, b, c, d)$ given the approval preferences:

$$
\begin{array}{ll}
v_{1}:\{a, b\} & v_{2}=\{b, c\} \\
v_{3}:\{b, c, d\} & v_{4}:\{a, d\}
\end{array}
$$

Voters have a utility of 1 for one approved candidate in the committee, $1+\frac{1}{2}$ for two candidates in the committee. ${ }_{1}+\frac{1}{3}$ for 3 candidates, etc.
the committee that maximizes voter utility is chosen.

## Main Result

Axiomatic characterization of PAV Proportional Approval Voting is the only zpproaral-based committhee nile that satisfies symmetry, consistency, continuity and

## Models

Fix committee size $k$ and set of candidates $C$

- Approval-based committee (ABC) rules: functions from approval profiles to weak orders of size-k

Approval-based committee (ABC) winner rules: functions from approval profiles to non-empty sets of size-k committees

## Axioms

Symmetry. An $A B C$ rule is symmetric if it is anonymous
and neutral. and neutral.
Consistency. An ABC rule $\mathcal{F}$ is consistent if for finite, disjoint $V V^{\prime} \in \mathbb{N}$, for $A \in A(C, V), A^{\prime} \in A\left(C, V^{\prime}\right)$, and for $W_{1}, W_{2} \in \mathscr{P}_{k}(C)$,
(i) if $W_{1} \succ \mathcal{F}(A) W_{2}$ and $W_{1} \succeq_{\mathcal{F}(N)} W_{2}$, then
if $W_{1} \succ F(A) W_{2}$ and $W_{1}$
$W_{1} \succ F(A+N) W_{2}$, and
(ii) if $W_{1} \succeq_{F(A)} W_{2}$ and $W_{1} \succeq_{\mathcal{F}_{(N)}} W_{2}$, then
$W_{1} \succeq_{F(A+N)} W_{2}$.
Continuity. An ABC rule $\mathcal{F}$ is continuous if for each $W_{1}, W_{2} \in \mathscr{S}_{k}(C)$ and $A, A^{\prime} \in A(C, V)$ where $W_{1}>F_{(1)} W_{2}$, there exists a positive integer $n$ such that $W_{1}>f\left(A+n A^{\prime}\right) W_{2}$

D'Hondt Proportionality

| N1 | N2 | N3 |
| :---: | :---: | :---: |
| iiii | ibil | iiii |
| ivir | il7i | Y 131 |
| ifipi |  | ifio |
| iiii |  |  |

Consider a situation where woters belong to one of four par bies $N_{1} \ldots, N_{4}$ and parties have disjoint sets of candidates. We want to fill 10 committer seats.

$$
\begin{array}{l|cccc} 
& N_{1} & N_{2} & N_{1} & N_{4} \\
\hline N_{\mathrm{i}} / / 1 & 9 & 21 & 28 & 42 \\
N_{\mathrm{i}} / 2 & 4.5 & 10.5 & 14 & 21 \\
N_{i} / / 3 & 3 & 7 & 13 & 14 \\
N_{\mathrm{i}} / 4 & 2.25 & 5.25 & 7 & 10.5 \\
N_{\mathrm{i}} / 5 & 1.8 & 4.2 & 5.6 & 8.4
\end{array}
$$

An $A B C$ (winner) rule satisfies D'Hondt proportionality if D'Hondt proportional committees are selected in party-list protiles.

## Main technical tool

An axiomatic characterization of
committee counting functions
A committee counting function $f(x, y)$ gives the utility of an approval vote with $x$ approved candidates in the com nittee and $y$ approved candidates in total. $f(z, y)$ defines a voting rule by maximizing the sum of utiMain technical result (relies on Skowron, Faliszewski, Slinko 2016): An ABC rule is a committee counting rule $f$ and only if it satiofies symmetry, consistency. Pareto efficiency, and continuity

Pareto efficiency. An ABC rule $\mathcal{F}$ is Pareto efficient if for each $W_{1}, W_{2} \in P_{k}(C)$ and each $A \in A(C, V)$ where for holds thate $W_{2} \circlearrowright F_{|A|} W_{1}$.

## What Do Multiwinner Voting Rules Do? An Experiment Over the Two-Dimensional Euclidean Domain




Paris School of Esonumis

## Experimental Setup

In exah experiment, we sample 200 voters and 200 candidates according to one of the 4 distributions: Gauscian, unfiorm on disc. uniform on square, and a mix of four Gaisslans. We then select a 20 -member committee according to a given mult iminner
ruik. We repeat the experiment 10000 times for each voting rule. For each (distribution, woting rule) pair, we provide two rulk. We repeat the experiment 10000 times for each voting rule. For each (distribution, voting rule) pair, we provide two
mages: a histogram (left) and a sample committee (right). The histograms stow how often winners from a given location mages: a histogram (lifft) and a sample committee (right). The histograms stow how often winners from a given location were selected; the higher color intensity corresponds to higher frequency. The first row shows the distnbutions themsive parliamentary elections, portfolio selection, or shortisting (see paper).


Questions?
Also, feel free to send any questions to: piotr.skowron@cs.ox.ac.uk.

