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De�nition

Edge mw is blocking if

1 it is not in the matching and

2 m prefers w to his wife or he is single and

3 w prefers m to her husband or she is single.

Theorem (Gale, Shapley 1962)

A stable matching always exists.
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The Gale-Shapley algorithm
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Edge mw is blocking if

1 it is not in the matching and

2 m prefers w to his wife or he is single and

3 w prefers m to her husband or she is single.

Extensions:

non-bipartite instances → stable roommates problem
edge weights → weighted stable matching problem
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Basic results

Theorem (Rural hospitals theorem, Gale, Sotomayor 1985)

The set of matched agents is the same in all stable matchings, even

in non-bipartite instances.

Weighted stable matching

Theorem (Feder 1992)

In non-bipartite instances, �nding a stable matching with maximum

weight (among all stable matchings) is NP-hard.

Theorem (Irving, Feder 1994)

In bipartite instances, a stable matching with maximum weight

(among all stable matchings) can be found in polytime.
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many apply in couples
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Popular matchings:

2 stable matchings
of size 2

the perfect matching
of size 4

Theorem (Gärdenfors 1975)

A popular matching always exists.

Theorem (Biró, Irving, Manlove 2010)

Stable matchings are minimum size popular matchings.
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Theorem (Kavitha 2012)

More Gale-Shapley runs

→ larger, less popular matching.
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Further results I

Theorem (Brandl&Kavitha, Nasre&Rawat 2016+)

The same algorithm works for many-to-one matchings.

Future direction

Extension to many-to-many matchings, stable allocations and

stable �ows?

Theorem (Hirakawa, Yamauchi, Kijima, Yamashita 2015)

The same vertices are matched in all max size popular matchings.

Future direction

Given a vertex set S , is there a popular matching that covers

exactly S?
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Further results II

Theorem (Kavitha 2016)

Polytime algorithm for min-cost popular half-integral matching.

Future direction

How to optimize over popular matchings when edge costs are

present? Is there an LP?

Theorem (Biró, Irving, Manlove 2010; Cs., Huang, Kavitha 2015)

When preference lists admit ties, the problem of determining

whether the instance admits a popular matching is NP-complete.

If one side has full ties only, the problem is solvable in polytime.

Future direction

Where is the boundary between solvable and hard cases?
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The popular edge problem

Slides skipped due to time constraints.

Question (forced edge)

Given an edge e, is there a popular matching M such that e ∈ M?

Question (forbidden edge)

Given an edge e, is there a popular matching M such that e /∈ M?

Theorem (Cs., Kavitha 2016)

There is a popular matching M such that e ∈ M ⇔
there is a stable matching M1 such that e ∈ M1 or

there is a dominant matching M2 such that e ∈ M2.
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A matching is dominant if no other matching dominates it.
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Dominant matchings exist in every instance.
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What are dominant matchings good for?

Given a forced/forbidden edge ab in G ,
is there a popular matching containing/avoiding ab?

Lattice structure on stable matchings → optimization over the
set of dominant matchings (edge weights).

Given G , is there an unstable popular matching?
If yes, there is an unstable dominant matching.
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Dominant matchings applied

Open problems

1 Is there a popular many-to-many matching, stable allocation
or stable �ow?

2 Given a vertex set S , is there a popular matching that covers
exactly S? Is there a popular matching of size exactly t?

3 How to optimize over popular matchings when edge costs are
present? Is there an LP?

4 When ties are present, where is the boundary between solvable
and hard cases?

5 Is there a popular matching containing 2 forced edges?
6 Is there a popular matching in the non-bipartite case?
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