# Popular matchings 

Ágnes Cseh

Hungarian Academy of Sciences


Future Directions in ComSoC, 21 November 2016

# Popular matchings 

Ágnes Cseh

Hungarian Academy of Sciences


Future Directions in ComSoC, 21 November 2016

## Outline

(1) Stable marriages

- definition and algorithms
- most important results
(2) Popular matchings
- definition and algorithms
- most important results and possible future directions
- dominant matchings
© Open questions

Popular matchings

## Definition



## Definition



O



## Definition



## Definition



## Definition



Definition
Edge mw is blocking if


## Definition

Edge mw is blocking if
(1) it is not in the matching and


## Definition

Edge mw is blocking if
(1) it is not in the matching and
(2) $m$ prefers $w$ to his wife or he is single and


Definition
Edge mw is blocking if
(1) it is not in the matching and
(2) $m$ prefers $w$ to his wife or he is single and
(3) $w$ prefers $m$ to her husband or she is single.


## Definition

Edge mw is blocking if
(1) it is not in the matching and
(2) $m$ prefers $w$ to his wife or he is single and
(3) $w$ prefers $m$ to her husband or she is single.

Theorem (Gale, Shapley 1962)
A stable matching always exists.


## Definition

Edge mw is blocking if
(1) it is not in the matching and
(2) $m$ prefers $w$ to his wife or he is single and
(3) $w$ prefers $m$ to her husband or she is single.


## Definition

Edge mw is blocking if
(1) it is not in the matching and
(2) $m$ prefers $w$ to his wife or he is single and
(0) $w$ prefers $m$ to her husband or she is single.



## Definition

Edge mw is blocking if
(1) it is not in the matching and
(2) $m$ prefers $w$ to his wife or he is single and
(0) $w$ prefers $m$ to her husband or she is single.



## Definition

Edge mw is blocking if
(1) it is not in the matching and
(2) $m$ prefers $w$ to his wife or he is single and
(3) $w$ prefers $m$ to her husband or she is single.



## Definition

Edge mw is blocking if
(1) it is not in the matching and
(2) $m$ prefers $w$ to his wife or he is single and
(3) $w$ prefers $m$ to her husband or she is single.


## Definition

Edge mw is blocking if
(1) it is not in the matching and
(2) $m$ prefers $w$ to his wife or he is single and
(0) $w$ prefers $m$ to her husband or she is single.



## Definition

Edge mw is blocking if
(1) it is not in the matching and
(2) $m$ prefers $w$ to his wife or he is single and
(0) $w$ prefers $m$ to her husband or she is single.



## Definition

Edge mw is blocking if
(1) it is not in the matching and
(2) $m$ prefers $w$ to his wife or he is single and
(0) $w$ prefers $m$ to her husband or she is single.



## Definition

Edge mw is blocking if
(1) it is not in the matching and
(2) $m$ prefers $w$ to his wife or he is single and
(3) $w$ prefers $m$ to her husband or she is single.


## Extensions:

- non-bipartite instances



## Definition

Edge mw is blocking if
(1) it is not in the matching and
(2) $m$ prefers $w$ to his wife or he is single and
(3) $w$ prefers $m$ to her husband or she is single.


## Extensions:

- non-bipartite instances $\rightarrow$ stable roommates problem



## Definition

Edge mw is blocking if
(1) it is not in the matching and
(2) $m$ prefers $w$ to his wife or he is single and
(3) $w$ prefers $m$ to her husband or she is single.


## Extensions:

- non-bipartite instances $\rightarrow$ stable roommates problem
- edge weights

$\dot{\pi}$


## Definition

Edge mw is blocking if
(1) it is not in the matching and
(2) $m$ prefers $w$ to his wife or he is single and
(3) $w$ prefers $m$ to her husband or she is single.


## Extensions:

- non-bipartite instances $\rightarrow$ stable roommates problem
- edge weights $\rightarrow$ weighted stable matching problem


## Theorem (Rural hospitals theorem, Gale, Sotomayor 1985)

The set of matched agents is the same in all stable matchings, even in non-bipartite instances.

## Theorem (Rural hospitals theorem, Gale, Sotomayor 1985)

The set of matched agents is the same in all stable matchings, even in non-bipartite instances.

## Weighted stable matching

## Theorem (Rural hospitals theorem, Gale, Sotomayor 1985)

The set of matched agents is the same in all stable matchings, even in non-bipartite instances.

## Weighted stable matching

## Theorem (Feder 1992)

In non-bipartite instances, finding a stable matching with maximum weight (among all stable matchings) is NP-hard.

## Theorem (Rural hospitals theorem, Gale, Sotomayor 1985)

The set of matched agents is the same in all stable matchings, even in non-bipartite instances.

## Weighted stable matching

## Theorem (Feder 1992)

In non-bipartite instances, finding a stable matching with maximum weight (among all stable matchings) is NP-hard.

## Theorem (Irving, Feder 1994)

In bipartite instances, a stable matching with maximum weight (among all stable matchings) can be found in polytime.

# National Resident Matching Program 

## National Resident Matching Program

- non-profit organization created in 1952 in the U.S.
- goal: match medical school graduates to residency positions
- over 41000 students in 2015
- many apply in couples
- need to negotiate stability and size






## Definition

$M$ is popular, if it is at least as popular as any other matching.

















## Theorem (Gärdenfors 1975)

A popular matching always exists.


## Theorem (Gärdenfors 1975)

A popular matching always exists.

## Theorem (Biró, Irving, Manlove 2010)

Stable matchings are minimum size popular matchings.













Theorem (Kavitha 2012)
A max size popular matching can be computed in linear time.


Theorem (Kavitha 2012)
A max size popular matching can be computed in linear time.

## Theorem (Kavitha 2012)

More Gale-Shapley runs $\rightarrow$ larger, less popular matching.

## Theorem (Brandl\&Kavitha, Nasre\&Rawat 2016+)

The same algorithm works for many-to-one matchings.

## Theorem (Brandl\&Kavitha, Nasre\&Rawat 2016+)

The same algorithm works for many-to-one matchings.

## Future direction

Extension to many-to-many matchings, stable allocations and stable flows?

## Theorem (Brandl\&Kavitha, Nasre\&Rawat 2016+)

The same algorithm works for many-to-one matchings.

## Future direction

Extension to many-to-many matchings, stable allocations and stable flows?

## Theorem (Hirakawa, Yamauchi, Kijima, Yamashita 2015)

The same vertices are matched in all max size popular matchings.

## Theorem (Brandl\&Kavitha, Nasre\&Rawat 2016+)

The same algorithm works for many-to-one matchings.

## Future direction

Extension to many-to-many matchings, stable allocations and stable flows?

## Theorem (Hirakawa, Yamauchi, Kijima, Yamashita 2015)

The same vertices are matched in all max size popular matchings.

## Future direction

Given a vertex set $S$, is there a popular matching that covers exactly S?

## Theorem (Kavitha 2016)

Polytime algorithm for min-cost popular half-integral matching.

## Theorem (Kavitha 2016)

Polytime algorithm for min-cost popular half-integral matching.

## Future direction

How to optimize over popular matchings when edge costs are present? Is there an LP?

## Theorem (Kavitha 2016)

Polytime algorithm for min-cost popular half-integral matching.

## Future direction

How to optimize over popular matchings when edge costs are present? Is there an LP?

## Theorem (Biró, Irving, Manlove 2010; Cs., Huang, Kavitha 2015)

When preference lists admit ties, the problem of determining whether the instance admits a popular matching is NP-complete. If one side has full ties only, the problem is solvable in polytime.

## Theorem (Kavitha 2016)

Polytime algorithm for min-cost popular half-integral matching.

## Future direction

How to optimize over popular matchings when edge costs are present? Is there an LP?

## Theorem (Biró, Irving, Manlove 2010; Cs., Huang, Kavitha 2015)

When preference lists admit ties, the problem of determining whether the instance admits a popular matching is NP-complete. If one side has full ties only, the problem is solvable in polytime.

## Future direction

Where is the boundary between solvable and hard cases?

## Question (forced edge)

Given an edge $e$, is there a popular matching $M$ such that $e \in M$ ?

## Question (forced edge)

Given an edge $e$, is there a popular matching $M$ such that $e \in M$ ?

## Question (forbidden edge)

Given an edge $e$, is there a popular matching $M$ such that $e \notin M$ ?

## Question (forced edge)

Given an edge $e$, is there a popular matching $M$ such that $e \in M$ ?

## Question (forbidden edge)

Given an edge $e$, is there a popular matching $M$ such that $e \notin M$ ?

## Theorem (Cs., Kavitha 2016)

There is a popular matching $M$ such that $e \in M \Leftrightarrow$

## Question (forced edge)

Given an edge $e$, is there a popular matching $M$ such that $e \in M$ ?

## Question (forbidden edge)

Given an edge $e$, is there a popular matching $M$ such that $e \notin M$ ?

## Theorem (Cs., Kavitha 2016)

There is a popular matching $M$ such that $e \in M \Leftrightarrow$

- there is a stable matching $M_{1}$ such that $e \in M_{1}$ or


## Question (forced edge)

Given an edge $e$, is there a popular matching $M$ such that $e \in M$ ?

## Question (forbidden edge)

Given an edge $e$, is there a popular matching $M$ such that $e \notin M$ ?

## Theorem (Cs., Kavitha 2016)

There is a popular matching $M$ such that $e \in M \Leftrightarrow$

- there is a stable matching $M_{1}$ such that $e \in M_{1}$ or
- there is a dominant matching $M_{2}$ such that $e \in M_{2}$.




## Dominant matchings




## Dominant matchings




- | | is smaller, but strictly more popular than --

- | | is smaller, but strictly more popular than --

- | | is smaller, but strictly more popular than --

- | | is smaller, but strictly more popular than --
- 二 is smaller, and not less popular than -_

- | | is smaller, but strictly more popular than --
- 二 is smaller, and not less popular than -_


## Definition

$M$ dominates $M^{\prime}$ if


- | | is smaller, but strictly more popular than --
- 二 is smaller, and not less popular than -_-


## Definition

$M$ dominates $M^{\prime}$ if
(1) $M$ is strictly more popular than $M^{\prime}$ or


- | | is smaller, but strictly more popular than --
- 二 is smaller, and not less popular than -_


## Definition

$M$ dominates $M^{\prime}$ if
(1) $M$ is strictly more popular than $M^{\prime}$ or
(2) $M$ and $M^{\prime}$ are equally popular and $|M|>\left|M^{\prime}\right|$.


- | | is smaller, but strictly more popular than --
- 二 is smaller, and not less popular than -_-


## Definition

$M$ dominates $M^{\prime}$ if
(1) $M$ is strictly more popular than $M^{\prime}$ or
(2) $M$ and $M^{\prime}$ are equally popular and $|M|>\left|M^{\prime}\right|$.

A matching is dominant if no other matching dominates it.


- | | is smaller, but strictly more popular than ---
- 二 is smaller, and not less popular than -_-


## Definition

$M$ dominates $M^{\prime}$ if
(1) $M$ is strictly more popular than $M^{\prime}$ or
(2) $M$ and $M^{\prime}$ are equally popular and $|M|>\left|M^{\prime}\right|$.

A matching is dominant if no other matching dominates it.

Theorem (Cs., Kavitha 2016)
Dominant matchings exist in every instance.


$$
\left.\right|_{2} ^{a} 1 \longrightarrow 1-\left.\right|_{2} ^{b^{\prime}}
$$

$$
\Rightarrow \text { d(a) } a_{2}
$$


dominant matching $\leftrightarrow$ stable matching

What are dominant matchings good for?

What are dominant matchings good for?

- Given a forced/forbidden edge $a b$ in $G$, is there a popular matching containing/avoiding $a b$ ?


## What are dominant matchings good for?

- Given a forced/forbidden edge $a b$ in $G$, is there a popular matching containing/avoiding $a b$ ?
- Lattice structure on stable matchings $\rightarrow$ optimization over the set of dominant matchings (edge weights).


## What are dominant matchings good for?

- Given a forced/forbidden edge $a b$ in $G$, is there a popular matching containing/avoiding $a b$ ?
- Lattice structure on stable matchings $\rightarrow$ optimization over the set of dominant matchings (edge weights).
- Given $G$, is there an unstable popular matching?


## What are dominant matchings good for?

- Given a forced/forbidden edge $a b$ in $G$, is there a popular matching containing/avoiding $a b$ ?
- Lattice structure on stable matchings $\rightarrow$ optimization over the set of dominant matchings (edge weights).
- Given $G$, is there an unstable popular matching? If yes, there is an unstable dominant matching.


## Open problems

## Open problems

(1) Is there a popular many-to-many matching, stable allocation or stable flow?

## Open problems

(1) Is there a popular many-to-many matching, stable allocation or stable flow?
(2) Given a vertex set $S$, is there a popular matching that covers exactly $S$ ? Is there a popular matching of size exactly $t$ ?

## Open problems

(1) Is there a popular many-to-many matching, stable allocation or stable flow?
(2) Given a vertex set $S$, is there a popular matching that covers exactly $S$ ? Is there a popular matching of size exactly $t$ ?
(3) How to optimize over popular matchings when edge costs are present? Is there an LP?

## Open problems

(1) Is there a popular many-to-many matching, stable allocation or stable flow?
(2) Given a vertex set $S$, is there a popular matching that covers exactly $S$ ? Is there a popular matching of size exactly $t$ ?
(3) How to optimize over popular matchings when edge costs are present? Is there an LP?
( When ties are present, where is the boundary between solvable and hard cases?

## Open problems

(1) Is there a popular many-to-many matching, stable allocation or stable flow?
(2) Given a vertex set $S$, is there a popular matching that covers exactly $S$ ? Is there a popular matching of size exactly $t$ ?
(3) How to optimize over popular matchings when edge costs are present? Is there an LP?
( When ties are present, where is the boundary between solvable and hard cases?
© Is there a popular matching containing 2 forced edges?

## Open problems

(1) Is there a popular many-to-many matching, stable allocation or stable flow?
(2) Given a vertex set $S$, is there a popular matching that covers exactly $S$ ? Is there a popular matching of size exactly $t$ ?
(3) How to optimize over popular matchings when edge costs are present? Is there an LP?
( When ties are present, where is the boundary between solvable and hard cases?
© Is there a popular matching containing 2 forced edges?
(0) Is there a popular matching in the non-bipartite case?

