Popular matchings

Ágnes Cseh

Hungarian Academy of Sciences

Future Directions in ComSoC, 21 November 2016

Popular matchings

Ágnes Cseh

Hungarian Academy of Sciences

Future Directions in ComSoC, 21 November 2016

Outline

- Stable marriages
 - definition and algorithms
 - most important results
- Popular matchings
 - definition and algorithms
 - most important results and possible future directions
 - dominant matchings
- Open questions

Definition

Definition

Edge mw is blocking if

• it is not in the matching and

Definition

- 1 it is not in the matching and
- m prefers w to his wife or he is single and

- 1 it is not in the matching and
- m prefers w to his wife or he is single and
- o w prefers m to her husband or she is single.

Edge mw is blocking if

- 1 it is not in the matching and
- m prefers w to his wife or he is single and
- w prefers m to her husband or she is single.

Theorem (Gale, Shapley 1962)

A stable matching always exists.

Definition

- 1 it is not in the matching and
- m prefers w to his wife or he is single and
- w prefers m to her husband or she is single.

Definition

- 1 it is not in the matching and
- m prefers w to his wife or he is single and
- 1 w prefers m to her husband or she is single.

Definition

- o it is not in the matching and
- m prefers w to his wife or he is single and
- w prefers m to her husband or she is single.

Definition

- 1 it is not in the matching and
- m prefers w to his wife or he is single and
- w prefers m to her husband or she is single.

Definition

- 1 it is not in the matching and
- m prefers w to his wife or he is single and
- w prefers m to her husband or she is single.

Definition

- 1 it is not in the matching and
- m prefers w to his wife or he is single and
- w prefers m to her husband or she is single.

Definition

- 1 it is not in the matching and
- m prefers w to his wife or he is single and
- w prefers m to her husband or she is single.

Definition

- 1 it is not in the matching and
- m prefers w to his wife or he is single and
- w prefers m to her husband or she is single.

Definition

Edge mw is blocking if

- it is not in the matching and
- m prefers w to his wife or he is single and
- w prefers m to her husband or she is single.

Extensions:

non-bipartite instances

Edge mw is blocking if

- 1 it is not in the matching and
- m prefers w to his wife or he is single and
- w prefers m to her husband or she is single.

Extensions:

ullet non-bipartite instances o stable roommates problem

Edge mw is blocking if

- it is not in the matching and
- m prefers w to his wife or he is single and
- w prefers m to her husband or she is single.

Extensions:

- ullet non-bipartite instances o stable roommates problem
- edge weights

Definition

Edge mw is blocking if

- it is not in the matching and
- m prefers w to his wife or he is single and
- w prefers m to her husband or she is single.

Extensions:

- ullet non-bipartite instances o stable roommates problem
- \bullet edge weights \rightarrow weighted stable matching problem

Basic results

Theorem (Rural hospitals theorem, Gale, Sotomayor 1985)

The set of matched agents is the same in all stable matchings, even in non-bipartite instances.

Theorem (Rural hospitals theorem, Gale, Sotomayor 1985)

The set of matched agents is the same in all stable matchings, even in non-bipartite instances.

Weighted stable matching

Theorem (Rural hospitals theorem, Gale, Sotomayor 1985)

The set of matched agents is the same in all stable matchings, even in non-bipartite instances.

Weighted stable matching

Theorem (Feder 1992)

In non-bipartite instances, finding a stable matching with maximum weight (among all stable matchings) is NP-hard.

Theorem (Rural hospitals theorem, Gale, Sotomayor 1985)

The set of matched agents is the same in all stable matchings, even in non-bipartite instances.

Weighted stable matching

Theorem (Feder 1992)

In non-bipartite instances, finding a stable matching with maximum weight (among all stable matchings) is NP-hard.

Theorem (Irving, Feder 1994)

In bipartite instances, a stable matching with maximum weight (among all stable matchings) can be found in polytime.

Real applications

National Resident Matching Program

National Resident Matching Program

- non-profit organization created in 1952 in the U.S.
- goal: match medical school graduates to residency positions
- over 41000 students in 2015
- many apply in couples
- need to negotiate stability and size

M is popular, if it is at least as popular as any other matching.

No transitivity

$$M_1 \prec M_2 \prec M_3 \prec M_4$$

$$M_1 \prec M_2 \prec M_3 \prec M_4$$

$$M_1 \prec M_2 \prec M_3 \prec M_4$$

No transitivity

$$M_1 \prec M_2 \prec M_3 \prec M_4 \prec M_1$$

$$M_1 \prec M_2 \prec M_3 \prec M_4 \prec M_1$$

 $M_1 \prec M_2 \prec M_3 \prec M_4 \prec M_1$ Popular matchings:

- 2 stable matchings of size 2
- the perfect matching of size 4

 $M_1 \prec M_2 \prec M_3 \prec M_4 \prec M_1$ Popular matchings:

- 2 stable matchings of size 2
- the perfect matching of size 4

Theorem (Gärdenfors 1975)

A popular matching always exists.

$$0 \longrightarrow 3 \longrightarrow 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

 $M_1 \prec M_2 \prec M_3 \prec M_4 \prec M_1$ Popular matchings:

- 2 stable matchings of size 2
- the perfect matching of size 4

Theorem (Gärdenfors 1975)

A popular matching always exists.

Theorem (Biró, Irving, Manlove 2010)

Stable matchings are minimum size popular matchings.

A max size popular matching can be computed in linear time.

A max size popular matching can be computed in linear time.

Theorem (Kavitha 2012)

More Gale-Shapley runs \rightarrow larger, less popular matching.

Further results |

Theorem (Brandl&Kavitha, Nasre&Rawat 2016+)

The same algorithm works for many-to-one matchings.

Further results |

Theorem (Brandl&Kavitha, Nasre&Rawat 2016+)

The same algorithm works for many-to-one matchings.

Future direction

Extension to many-to-many matchings, stable allocations and stable flows?

Theorem (Brandl&Kavitha, Nasre&Rawat 2016+)

The same algorithm works for many-to-one matchings.

Future direction

Extension to many-to-many matchings, stable allocations and stable flows?

Theorem (Hirakawa, Yamauchi, Kijima, Yamashita 2015)

The same vertices are matched in all max size popular matchings.

Theorem (Brandl&Kavitha, Nasre&Rawat 2016+)

The same algorithm works for many-to-one matchings.

Future direction

Extension to many-to-many matchings, stable allocations and stable flows?

Theorem (Hirakawa, Yamauchi, Kijima, Yamashita 2015)

The same vertices are matched in all max size popular matchings.

Future direction

Given a vertex set S, is there a popular matching that covers exactly S?

Polytime algorithm for min-cost popular half-integral matching.

Polytime algorithm for min-cost popular half-integral matching.

Future direction

How to optimize over popular matchings when edge costs are present? Is there an LP?

Polytime algorithm for min-cost popular half-integral matching.

Future direction

How to optimize over popular matchings when edge costs are present? Is there an LP?

Theorem (Biró, Irving, Manlove 2010; Cs., Huang, Kavitha 2015)

When preference lists admit ties, the problem of determining whether the instance admits a popular matching is NP-complete. If one side has full ties only, the problem is solvable in polytime.

Polytime algorithm for min-cost popular half-integral matching.

Future direction

How to optimize over popular matchings when edge costs are present? Is there an LP?

Theorem (Biró, Irving, Manlove 2010; Cs., Huang, Kavitha 2015)

When preference lists admit ties, the problem of determining whether the instance admits a popular matching is NP-complete. If one side has full ties only, the problem is solvable in polytime.

Future direction

Where is the boundary between solvable and hard cases?

Question (forced edge)

Given an edge e, is there a popular matching M such that $e \in M$?

Question (forced edge)

Given an edge e, is there a popular matching M such that $e \in M$?

Question (forbidden edge)

Given an edge e, is there a popular matching M such that $e \notin M$?

Question (forced edge)

Given an edge e, is there a popular matching M such that $e \in M$?

Question (forbidden edge)

Given an edge e, is there a popular matching M such that $e \notin M$?

Theorem (Cs., Kavitha 2016)

There is a popular matching M such that $e \in M \Leftrightarrow$

Question (forced edge)

Given an edge e, is there a popular matching M such that $e \in M$?

Question (forbidden edge)

Given an edge e, is there a popular matching M such that $e \notin M$?

Theorem (Cs., Kavitha 2016)

There is a popular matching M such that $e \in M \Leftrightarrow$

ullet there is a stable matching M_1 such that $e \in M_1$ or

Question (forced edge)

Given an edge e, is there a popular matching M such that $e \in M$?

Question (forbidden edge)

Given an edge e, is there a popular matching M such that $e \notin M$?

Theorem (Cs., Kavitha 2016)

There is a popular matching M such that $e \in M \Leftrightarrow$

- ullet there is a stable matching M_1 such that $e\in M_1$ or
- there is a dominant matching M_2 such that $e \in M_2$.

Dominant matchings

Slides skipped due to time constraints

 | is smaller, but strictly more popular than ___

 | is smaller, but strictly more popular than — —

 | is smaller, but strictly more popular than ___

- | is smaller, but strictly more popular than ___
- is smaller, and not less popular than ___

- | is smaller, but strictly more popular than ___
- _ is smaller, and not less popular than ___

Definition

M dominates M' if

- | is smaller, but strictly more popular than ___
- is smaller, and not less popular than ___

Definition

M dominates M' if

M is strictly more popular than M' or

- | is smaller, but strictly more popular than __
- is smaller, and not less popular than ___

Definition

M dominates M' if

- M is strictly more popular than M' or
- ② M and M' are equally popular and |M| > |M'|.

- | is smaller, but strictly more popular than ___
- is smaller, and not less popular than ___

Definition

M dominates M' if

- M is strictly more popular than M' or
- ② M and M' are equally popular and |M| > |M'|.

A matching is dominant if no other matching dominates it.

- | is smaller, but strictly more popular than ___
- is smaller, and not less popular than ___

Definition

M dominates M' if

- M is strictly more popular than M' or
- ② M and M' are equally popular and |M| > |M'|.

A matching is dominant if no other matching dominates it.

Theorem (Cs., Kavitha 2016)

Dominant matchings exist in every instance.

dominant matching ↔ stable matching

What are dominant matchings good for?

 Given a forced/forbidden edge ab in G, is there a popular matching containing/avoiding ab?

- Given a forced/forbidden edge ab in G, is there a popular matching containing/avoiding ab?
- Lattice structure on stable matchings → optimization over the set of dominant matchings (edge weights).

- Given a forced/forbidden edge ab in G, is there a popular matching containing/avoiding ab?
- Lattice structure on stable matchings → optimization over the set of dominant matchings (edge weights).
- \bullet Given G, is there an unstable popular matching?

Dominant matchings applied

Slides skipped due to time constraints

- Given a forced/forbidden edge ab in G, is there a popular matching containing/avoiding ab?
- Lattice structure on stable matchings → optimization over the set of dominant matchings (edge weights).
- Given G, is there an unstable popular matching?
 If yes, there is an unstable dominant matching.

Dominant matchings applied

Stable matchings

Open problems

Is there a popular many-to-many matching, stable allocation or stable flow?

- Is there a popular many-to-many matching, stable allocation or stable flow?
- Given a vertex set S, is there a popular matching that covers exactly S? Is there a popular matching of size exactly t?

- Is there a popular many-to-many matching, stable allocation or stable flow?
- \bigcirc Given a vertex set S, is there a popular matching that covers exactly S? Is there a popular matching of size exactly t?
- How to optimize over popular matchings when edge costs are present? Is there an LP?

Stable matchings

- Is there a popular many-to-many matching, stable allocation or stable flow?
- Given a vertex set S, is there a popular matching that covers exactly S? Is there a popular matching of size exactly t?
- How to optimize over popular matchings when edge costs are present? Is there an LP?
- When ties are present, where is the boundary between solvable and hard cases?

Stable matchings

- Is there a popular many-to-many matching, stable allocation or stable flow?
- Given a vertex set S, is there a popular matching that covers exactly S? Is there a popular matching of size exactly t?
- How to optimize over popular matchings when edge costs are present? Is there an LP?
- When ties are present, where is the boundary between solvable and hard cases?
- Is there a popular matching containing 2 forced edges?

Stable matchings

- Is there a popular many-to-many matching, stable allocation or stable flow?
- Given a vertex set S, is there a popular matching that covers exactly S? Is there a popular matching of size exactly t?
- How to optimize over popular matchings when edge costs are present? Is there an LP?
- When ties are present, where is the boundary between solvable and hard cases?
- Is there a popular matching containing 2 forced edges?
- Is there a popular matching in the non-bipartite case?