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1 Introduction

In Crawford and Sobel (1982) an informed player has the possibility to partially
reveal his private information by sending a message to another player who has
to choose an action. There are Bayesian equilibrium payoffs of this game that
Pareto improve the equilibrium of the “ silent ” game where the informed player
cannot communicate. Imagine that the players can communicate through a me-
diator in this situations. The informed player sends information about his type
to the mediator and not to the receiver. The mediator selects an action from a
distribution which depends on the sender’s declaration. The mediator suggests
the selected action to the receiver. In this manner the players may improve even
upon the unmediated extension. Mitusch and Strausz (2000) give an intuitive1

example demonstrating this improvement. In games with incomplete information
the largest set of non-cooperative solutions achievable when arbitrary means of
communication are available, before choosing actions, is the set of communication
equilibria (Myerson 1982, Forges 1986).

Aumann and Hart (2003) characterize the set of Bayesian Nash equilibrium pay-
offs of 2 players finite games with one-sided2 incomplete information extended by
an infinitely long plain (i.e. unmediated) communication phase. Denote the ex-
tended game of Aumann and Hart by EXTΓ, where Γ is the underlying “ silent ”
game. They show that multistage, possibly infinitely long communication can do
better than just a single or finitely many stages of communication. Nevertheless,
even if the communication is infinitely long, there is still place for improvement.

In our Theorem we show, that players can achieve any payoff from the set of
communication equilibrium payoffs of the underlying game in Bayes Nash equi-
libria of EXTΓ if players’ communication strategies can be correlated.

Following Harsányi (1967) a Bayesian game Γ =< I, Li, Ai, gi, λ, i ∈ I > is
described by a finite set of players I, the finite set of possible types Li of player i,
a compact set of actions Ai for player i. Let L = ΠI

i=1L
i and A = ΠI

i=1A
i and

gi : L×A → R the payoff function of player i and λ ∈ ∆L is the players common
prior over L.

Suppose, players participate in an extended game Γq which is as follows: Players
learn their types as in Γ. Players can send information about their types privately
to a mediator. Suppose, the sent message profile is l. The mediator randomizes

1The intuition behind this result is that the mediated equilibrium is not constrained by the
incentives of a type of the informed player to be indifferent between sending different messages.
This happens when the informed player reveals his information partially and mixes between
messages.

2See Amitai (1996) for incomplete information on both side.
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over the action profiles according to a function q : L → ∆A of the players’ mes-
sages. Suppose, the result of the randomization is a = (a1, . . . , aI). The mediator
then sends private messages to the players which can be interpreted as the play-
ers’ suggested action. That is player i privately receives ai ∈ Ai. Finally players
choose actions. If it is a Bayesian Nash equilibrium of the extended game that
given q the players are sincere about their types and obediently follow the sugges-
tion of the mediator then q is a canonical communication equilibrium. Let ME(Γ)
denote the set of canonical communication equilibrium payoffs of a game Γ with
incomplete information. Let BE(Γ) be the set of Bayesian Nash equilibrium pay-
offs of some Γ. Then ∪qBE(Γq) = ME(Γ). According to the revelation princi-
ple, these direct (i.e. canonical) mechanisms cover all possibly more complicated
communication procedures3. More precisely, for all c : Πi∈IM

i → ∆(Πi∈IH
i)

non-canonical communication device (M i 6= Li, H i 6= Ai) BE(Γc) ⊆ ME(Γ).

Our main question is whether the players can achieve all possible outcomes in
ME(Γ) in an incentive compatible manner with a help of a mediator who cannot
condition his randomization on received messages from the players?

I show that the answer is positive if we assume that players can have a possi-
bly infinitely long unmediated interim conversation after receiving the mediators
recommendation about how to communicate. In the Crawford and Sobel model
or in the model of Aumann and Hart it means that players can achieve any-
thing which is possible with canonical communication devices by engaging in a
longer two-sided communication (EXT ) if players’ communication strategies can
be correlated. That is, it is sufficient to achieve efficiency in any game if players
can use correlated communication strategies4.

We apply Aumann’s strategic form correlated equilibrium for games with incom-
plete information to answer this question formally. Any incomplete information
game can be extended with a correlation device µ which randomizes over the set

of strategy profiles s = (s1, . . . , sI) ∈ Πi∈IA
iL

i

of the underlying game. Denote
the following extended game by Γµ. Players learn their types as in Γ. µ random-
izes and informs player i privately about si, the ith coordinate of the realization.
Finally, players choose strategies and play in Γ. µ is a correlated equilibrium
distribution of Γ if in Bayes Nash equilibrium of the extended game Γµ, player i
of type li receiving recommendation si, obediently plays according to si(li). De-
note the set of correlated equilibrium payoffs of Γ by CE(Γ) = ∪µBE(Γµ). It

3See Gerardi and Myerson (2005), where the revelation principle fails due to imposing se-
quential rationality.

4See Dimitri (2000) how correlated errors in Rubinstein’s (1989) Electronic Mail Game can
enhance the possibility of efficient coordination and outcomes. Other real world justification for
correlated, interdependent communication stem from social, cultural backgrounds; the prag-
matic use of language; the effect of media etc..
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is obvious that BE(Γ) ⊆ CE(Γ) ⊆ ME(Γ). Forges (1990) was interested in
finding a universal unmediated interim cheap talk extension of Γ, extΓ for which
ME(Γ) = CE(extΓ).

Forges (1990): For any finite game Γ with at least 3 players, every payoff in
ME(Γ) is a correlated equilibrium payoff of a universally extended game extΓ,
where after having received their information as in Γ, players talk for two stages
by sending public messages. In case of 3 players the message spaces have to have
the size of a continuum.

Forges’s message is that a mediator does not need information about the play-
ers’ type and randomize accordingly to achieve all the possible communication
equilibrium payoffs of Γ. If players can have interim communication after the
correlation phase, it is enough if the mediator works as a correlation device for
the extended game extΓ. Notice, that the correlation device does not give sug-
gestions about how to choose actions in Γ, but how to communicate in extΓ and
choose actions in Γ according to the history of the communication.

Our main contribution is the extension of Forges (1990) for general finite games
with countable message spaces even with 2 or 3 players. Another way to look
at our contribution is the calculation of the set of correlated equilibria of EXTΓ
suggested by Aumann and Hart (2003).

Theorem: For any finite Bayesian game Γ, almost every payoff in ME(Γ) is
a correlated equilibrium payoff of a universally extended game EXTΓ, where
after having received their information as in Γ, players can send messages from
countable message spaces to each other simultaneously in discrete time, possibly
for infinitely many stages. The communication terminates in finite time with
probability 1.

The Theorem basically states that the set of correlated equilibrium payoffs of
the extended game of Aumann and Hart (2003) is the set of communication
equilibrium payoffs of the underlying game. In short:

ME(Γ) ≈ CE(EXTΓ).

Our correlated communication strategies are constructed in a way that players
may find profitable deviations from the recommended strategy in the absence
of punishment. These deviations cannot be detected with probability 1, but ar-
bitrarily close to it. The deviator is then punished on his interim individually
rational level. For this reason with our construction players can only achieve
strictly interim individually rational payoffs from the set of communication equi-
librium payoffs in correlated equilibria of the extended game. However, if players
are allowed to communicate in continuous time, deviators can find profitable
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deviations from the suggested strategy with positive probability only if these de-
viations are detected with probability 1. Thus, we have the full implementation
of ME(Γ) in correlated equilibria of EXTcontinuousΓ.

Aumann and Hart (2003) have no reason to care about punishments in their
equilibria. In Forges (1990) there is no need of deterring deviations as long as the
number of players is more than 3 or players can use messages from an interval
if the number of players is 3. This is because in these cases one can design cor-
related communication strategies, where unilateral deviations cannot affect the
induced distribution, the honest players’ information and the deviator cannot
learn more about the others’ types and actions. To put it simply, the deviator
finds herself in a situation just as in Γq after any deviation. However, in case
of 2 players it is obviously not the case as it is demonstrated in Forges’s (1990)
example 2.4. Players can affect the induced distribution and the information
of the opponent. This is because players have to signal and learn their actions
simultaneously. As Forges (1990) points out, the main problem comes from the
combination of signalling and decision. Forges (1985) gives solutions for special
cases when this problem does not arise.

Our novel construction of correlated strategies opens the scope of interim pun-
ishments which deter players from deviation. That is, the mediator can give
suggestions which the players would not obey in the absence of punishments.
The issue of punishment is more delicate then it seems for the first sight. The
equilibrium hinges on the possibility of infinitely long communication. To punish
effectively, players cannot know in advance the exact time when the communica-
tion terminates and the time they learn their actions.

Ben-Porath (2003) uses dominated Bayes Nash equilibria of Γ to deter deviations
during the communication (and to maintain sequential rationality). However, in
his construction, a player who deviates only in the last stage of communication
learns his action and updates his prior, thus the original dominated Bayes Nash
equilibrium cannot apply as punishment.

Unlike in Aumann and Hart, in our equilibria players do not update their pri-
ors in each (even) stage of the communication, but it happens at an uncertain
stage which is chosen by the correlation device. Knowing the stage or having a
good inference when updating happens, a player could have incentive to deviate
in that stage of communication, learn his action, update his prior and keep his
opponent from updating by sending an incorrect message. The conditions for
communication equilibria do not guarantee that players could not benefit from
such deviations. The other player may detect this deviation but punishing a
player with updated priors is impossible in general without stringent restrictions
on the payoffs.
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Our construction resolves this problem and applies to Forges (1990) with 2 or
3 players with countable message spaces and fixes5 the problem of punishment
in Ben-Porath (2003). Finally, it shows that players can achieve any payoff in
ME(Γ) in the game of Aumann and Hart (2003) if the communication strategies
can be correlated.

In Section 2 we give the definitions we need and state the Theorem. Section
3 gives the intuitive idea of the proof. It consists of 3 parts. First we show the
existence of correlated communication strategies with which players can mimic
any communication device. More precisely, for any q there are correlated random
communication strategies and decision rules such that if players follow the recom-
mended communication strategies associated to their types, then given the his-
tory of communication it is a mutual best reply to play according to the decision
rules and achieve the same payoffs as offered by q whenever q is a communica-
tion equilibrium of Γ. We stress that following the recommended communication
strategy is not necessarily a best reply given players’ information. Second we
require sufficient conditions from the mechanism, called weak security, such that
deviations from the recommendations can be detected and punished. Detecting
deviations can be solved easily. However, as we pointed out it is important that
the deviator should be caught before he learns his action. Finally we show how to
embed the mimicking strategies into weakly secure ones in a way that a detected
deviator can be punished with high probability. The exact, constructive proof
can be found in the Appendix.

2 Preliminaries and the Theorem

First we recall the basic definitions of signalling function, Bayesian Nash equi-
librium, correlated equilibrium, communication equilibrium of a Bayesian game
and the notion of interim individually rational payoffs.

Let Γ be a Bayesian game defined above with finite action sets and Si = {si|si :
Li → Ai} the set of pure strategies of player i in Γ and identify I with {1, . . . , I}.
Given a compact set E denote ∆E the set of Borel probability measures over the
set E and supp µ = {e ∈ E|∀U : U open and e ∈ U, µ(U) > 0} for µ ∈ ∆E is
the support of µ. If Ei is compact for all i ∈ I we use the product topology on
E = Πi∈IE

i. We extend linearly gi to ρ ∈ ∆A as gi(ρ, l) = Eρg
i(a, l).

We introduce now the general notion of a signalling function c which receives
private inputs from the players and produces private outputs for the players as

5In our games players are not allowed to use any ”hard device” such as urns, envelopes as
in Krishna (2004) or recording machine as in the corrigendum of Ben-Porath (2003).
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possibly random functions of the inputs. Let c : Πi∈IM
i
c → ∆Hc a Borel function,

where M i
c, H

i
c are compact sets.

1. players send a private message mi
c ∈ M i

c, possibly chosen randomly accord-
ing to σi

c ∈ ∆M i
c to the signaling function c as private inputs,

2. c selects hc ∈ Hc = Πi∈IH
i
c according to c(mc) ∈ ∆Hc

3. player i is told privately the ith coordinate hi
c of the realization of c(mc)

Let σc = (σ1
c , . . . , σ

I
c ) and denote by c(σc) ∈ ∆Hc the distribution induced by c

and any, possibly correlated mixed messages σc ∈ ∆Mc. Consider the following
extended game Γc:

1. player i learns his type li ∈ Li for all i ∈ I as in Γ

2. players send private messages mc = (m1
c , . . . ,m

I
c) to c

3. players receive private messages hi
c from c, where hc = (h1

c , . . . , h
I
c) is chosen

according to c(mc)

4. players choose actions in Γ

A strategy in the extended game Γc is called a c−protocol. Formally:

Definition 1 A c−protocol (σc, ρc)(.) consists of the communication strategies
σi

c(.) : Li → ∆M i
c and decision rules that are Borel functions ρi

c : Li×H i
c → ∆Ai

for6 each i ∈ I. Let Ai = (M i
c × AiH

i
c). Si

Γc = AiL
i

denotes the set of pure
strategies of player i in Γc.

Γc is a Bayesian game with compact action sets Ai. We skip the subindex c
if it is not confusing. A Bayesian Nash equilibrium of Γc is a strategy profile
s = (s1, . . . , sI), where si ∈ ∆Si

Γc :

si(li) ∈ arg max
(σi,ρi)∈∆Ai

∑

l−i∈L−i

λ(l−i|li)Ec(σi,σ−i(l−i))g
i((ρi(hi), ρ−i(l−i, h−i)), (li, l−i)).

for all li ∈ Li, i ∈ I. Denote the set of Bayes Nash equilibrium payoffs of Γc with
BE(Γc).

Definition 2 An information structure on the set E = Πi∈IE
i, where Ei is

compact, is a Borel probability measure µ over E. An element e = (e1, . . . , eI) ∈
E is chosen according to µ, then player i is informed of the component ei.

6This is without loss of generality since hi can include mi.
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To put it in another way, an information structure µ on E is a signalling function
c with H i

c = Ei for all i and c(.) = µ ∈ ∆E.

Given signalling functions c1, c2 we can define a new signalling function. Suppose
players first communicate through c1. After having received their messages from
c1 players communicate through c2. This sequential communication is equivalent
with communicating through the signalling function c

.
= c1 ⊗ c2 which receives

messages (mi
c1

, mi
c2

(.)) ∈ M i
c1
×M i

Hi
c1

c2
= M i

c. c selects hc1 according to c1(mc1)
and hc2 according to c2(mc2(hc1)) and player i is told (hi

c1
, hi

c2
) ∈ H i

c = H i
c1
×H i

c2
.

M i
Hi

c1

c2
is the set of Borel functions from H i

c1
to M i

c2
for all i. A mixed communi-

cation strategy σi
c(.) : Li → ∆M i

c is equivalent with a pair (σi
c1

, σi
c2

(.))(.) : Li →
∆M i

c1
×(∆M i

c2
)Hi

c1 behavioral communication strategy by assuming perfect recall.
The construction of new signalling functions can be extended to the product or
sequence of infinitely many signalling functions7 c =

⊗∞
t=1 ct without any prob-

lem with the specification of the mixed strategies and without the violation of
Kuhn’s Theorem (1953). Given an infinite sequence of signalling functions we say
that the communication is essentially terminated at time T if the communication
history is hc = (hc1 , . . . , hcT

, . . .) and ρi is constant over the cylinder generated
by (hi

c1
, . . . , hi

cT
) for all i ∈ I.

Let µ ∈ ∆(Πi∈IS
i
Γc) an information structure and denote by (Γc)µ .

= Γµ⊗c the
following Bayesian game:

1. player i learns his type li ∈ Li for all i ∈ I as in Γ

2. (mc, ρc)(.) = ((m1
c , ρ

1
c)(.), . . . , (m

I
c , ρ

I
c)(.)) ∈ SΓc is selected according to µ

3. player i learns (mi
c, ρ

i
c)(.) ∈ Si

Γc

4. players send private messages m′
c = (m′1

c , . . . , m′I
c ) to c

5. players receive private messages hi
c from c, where hc = (h1

c , . . . , h
I
c) is chosen

according to c(m′
c)

6. players choose actions in Γ

Players receive pure strategy recommendations si = (mi, ρi)(.) ∈ Si
Γc from µ after

they have learnt their types, that is a pure strategy in the Bayesian game (Γc)µ

of player i is f i : Li × Si
Γc → Ai. For every µ ∈ ∆SΓc and f ∈ SΓµ⊗c there is an

induced distribution P µ
f ∈ ∆(L×SΓc×Hc×A). Let f i = idi if players obediently

follow µ that is, for all li and all si ∈ supp µ, idi(li, si) = si(li).

7The extension of Kuhn’s Theorem for countable message spaces was proposed by Wolfe
(1955). More generally see it in Aumann (1964).
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Definition 3 An information structure µ is a correlated equilibrium distribution
of Γc iff id is a Bayesian Nash equilibrium of Γµ⊗c.

Denote CE(Γc) ⊂ Πi∈IR|L
i| the set of correlated equilibrium payoffs of Γc. Then

∪µ∈∆SΓcBE(Γµ⊗c) = CE(Γc).

Alternatively, one can think of µ as a correlated c-protocol. Let σ−i
si (.) denote

player i’s belief about the communication strategies of players −i given si, that

is the marginal of µ(.|si) on Πj∈−iM
jLj

. Also denote ρ−i
si (.) the belief of player

i about the decision rules of −i given si, that is the marginal of µ(.|si) on
Πj∈−i(H

j×Aj)Lj
for some si ∈ supp µ. µ is a correlated equilibrium distribution

of Γc if for all strategy profile s = (s1, . . . , sI) ∈ supp µ and for all li ∈ Li, i ∈ I,

si(li) ∈ arg max
(σi,ρi)∈∆Ai

∑

l−i∈L−i

λ(l−i|li)Ec(σi,σ−i

si (l−i))g
i(ρi(hi), ρ−i

si (l−i, h−i), (li, l−i)).

The set Q = {q|q : L → ∆A} of signalling functions are called the set of canonical
communication devices for games with types space L and action sets A. For each
q ∈ Q and λ there is a corresponding distribution Pλ,q =∈ ∆(L × A), where
Pλ,q(l, a) = λ(l)q(l)(a). We write simply Pq when λ is clear from the context.
Denote

gi[q|li] =
∑

l−i

λ(l−i|li)
∑

a

q(li, l−i)(a)gi(a, (li, l−i)) =
∑

l−i

∑
a

Pq(l
−i, a|li)gi(a, (li, l−i)).

the expected payoff of player i of type li when all the players are sincere and
obedient and the mediator is randomizing according to q.

Definition 4 q is a canonical communication equilibrium of Γ if and only if all
the players being sincere and obedient forms a Bayesian Nash equilibrium of Γq:

gi[q|li] ≥
∑

l−i

λ(l−i|li)
∑

a

q(l′i, l−i)(a)gi(ρi(ai), a−i, (li, l−i))

for all i, li, l′i and for all ρi : Ai → Ai. Let ME(Γ) ⊂ Πi∈IR|L
i| be the set of

communication equilibrium payoffs. In short:

∪q∈QBE(Γq) = ME(Γ).

Let G(q) = {Γ|q is communication equilibrium of Γ}.
Notice that for any signalling function c we have BE(Γc) ⊆ ME(Γ).

Definition 5 A correlated c−protocol µ mimicking q is secure8 or universal iff
whenever q is a communication equilibrium of Γ then µ is a correlated equilibrium
distribution of Γc.

8See Gossner (1998) for the characterization of uncorrelated secure protocols for games with
complete information.
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Now consider the interim public two stage cheap talk extension of a finite Γ,
extΓ

.
= Γc with c = cpublic ⊗ cpublic, where cpublic : NI → (NI)I such that

c(n1, . . . , nI) = ((n1, . . . , nI), . . . , (n1, . . . , nI)). That is after the message pro-
file (n1, . . . , nI) ∈ NI each player receives (n1, . . . , nI), thus the messages are
public:

1. players learn their types l ∈ L as in Γ

2. players send messages to each other simultaneously publicly for two stages
from message sets M i

cpublic

3. players choose actions in Γ

Forges established the following equivalence depending on the number of players
and the message spaces M i

cpublic
available:

Proposition 1 Forges (1990): For |I| > 3 and M i
cpublic

= N for any q there is

a µ(q) ∈ ∆SextΓ secure correlated protocol mimicking q. The same is true for
|I| = 3 if M i

cpublic
= [0, 1]. As a consequence:

ME(Γ) = CE(extΓ)

Notice that µ(q) can be chosen independently of the players preferences gi in Γ
and also independently of λ. µ(q) only depends on the support of q and on the
distributions q(l).

The following definition gives us the payoff vectors that are interim individu-
ally rational for the players. The level of these payoffs and the corresponding
strategies can serve as punishments in case of deviations.

Definition 6 Forges (2006): A payoff vector gi[q|li]li∈Li payoff vector is (strictly)
interim individually rational for player i ∈ I (or interim supportable with (strict)
punishment) if there is a system of distributions q−i : L−i → ∆A−i such that for
all li ∈ Li and ai ∈ Ai,

gi[q|li] ≥ (>)
∑

l−i

λ(l−i|li)
∑

a−i

q−i(l−i)(a−i)gi(ai, a−i, (li, l−i)).

Let (S)INTIR(Γ) be the set of payoffs g[q] in Πi∈IR|L
i|, that are (strictly) interim

individually rational for every player. Let gi(li) the interim individually rational
level for player i of type li.

In words, suppose at the beginning of a procedure player i of type li expects that
−i choose actions according to

∑
l−i λ(l−i|li)q−i(l−i). Then i is not willing to

participate in this procedure if it offers a lower expected payoff than his interim
individually rational level at type li. This is because there exists an action bi
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with which he can guarantee his interim individually rational level. Notice that
i has to know q−i to choose his action bi which offers him at least his interim
individually rational level. Thus the order of the quantifiers in the definition is
important. In our construction, player i will not deviate from the equilibrium
path because he expects that in case of deviation −i follow q−i to choose actions.
Notice also, that the definition requires that i has no more information9 than his
type li. It has to be clear then that ME(Γ) ⊆ INTIR(Γ), see Lemma 3 later for
a constructive proof.

Let the universal interim infinite cheap talk extension of a finite Γ,

∞⊗
t=1

cpublic = c∞public

Let EXTΓ = Γc∞public be the following extended game:

1. players learn i learns his type li ∈ Li for all i ∈ I as in Γ

2. players send messages to each other simultaneously at every time t (possibly
infinitely long) from message sets N

3. players choose actions in Γ

Theorem 1 For any finite Γ with |I| ≤ 3 and t ∈ N:

ME(Γ) ∩ SINTIR(Γ) = CE(EXTΓ) ∩ SINTIR(Γ)

if t ∈ [0, 1] or |I| > 3:

ME(Γ) = CE(EXTΓ)

The communication essentially terminates in finite time with probability 1.

In words, for any finite Γ, if players communicate in discrete time and can use
only countable message spaces, then any communication equilibrium q for which
g[q] ∈ SINTIR(Γ) there is a µ(q, Γ) over the set of strategy profiles of EXTΓ
such that:

1. BE((EXTΓ)µ(q,Γ)) ⊇ BE(Γq). Notice that in EXTΓ players can commu-
nicate directly. As a consequence the extended game can have equilibrium
payoffs which are not equilibrium payoffs of Γq

9The argument for procedures promising strictly interim individually rational payoffs could
be extended to games with information structures. It would require that player i’s expected
payoff after receiving his information li, ei should be strictly interim individually rational for
any ei.
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2. id is Bayesian Nash equilibrium of (EXTΓ)µ(q,Γ) and Pq(l, a) = P
µ(q,Γ)
id (l, a)

for all (l, a) ∈ L× A. Thus achieves the same payoffs as q.

3. although µ depends on (q, Γ), the extension EXT is independent of (q, Γ),
that is universal in the sense of Forges (1990).

Moreover, if players can communicate in continuous time, the same statements
are true for any q communication equilibrium and the generating protocols are
secure.

We give the main idea of the proof in the next section. The detailed, constructive
proof can be found in the Appendix.

3 Proof

3.1 Mimicking with Short Universal Mechanism

A basic property of a (possibly correlated) protocol which wishes to achieve the
same effect as some q is as follows. Since players’ messages are public we simply
write H i

cpublic
= H

Definition 7 µ ∈ ∆SΓc mimics q ∈ Q iff for all i, li, all si = (mi, ρi)(.) ∈ supp µ
and all (li, si, h, .) ∈ supp P µ

id:

1. P µ
id(l

−i, a|li, si) = Pq(l
−i, a|li),

2. P µ
id(l

−i, a−i|li, si, h) = Pq(l
−i, a−i|ρi(li, h), li).

Lemma 1 For any q ∈ Q and for any finite Γ there is a µ(q) ∈ ∆SextΓ which
mimics q. Moreover M i

cpublic
can be chosen to be countable.

It is easy to see that, if q is a communication equilibrium of Γ and players −i
play according to id−i then after the recommendation si = (mi, ρi)(.)

1. player i of type li is always better off communicating according to mi(li)
than according to mi(l′i)

2. mi(.) however, is not necessarily the optimal communication strategy.

3. given that i of type li has communicated according to mi(li) and the history
h so far, it is optimal to choose his action according to ρi(li, h), that is the
action recommended, corresponding to the realized history of communica-
tion.
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It must be clear that ones µ(q) mimics q it is enough to concentrate on deterring
players from profitable deviations during the communication to maintain equilib-
rium. If i of type li pretends type l′i, the condition on communication equilibrium
ensures that i cannot be better off with such a deviation in any procedure which
mimics q.

Definition 8 A deviation f i from idi is a strange deviation of type li if there is
an si = (mi, ρi)(.) ∈ supp µ for which f i(li, si) = (m′i, ρ′i) and there is no l′i such
that mi(l′i) = m′i. A deviation is strange if there is a type for which it is strange.

3.2 Punishment

For j ∈ I denote an |I| element partition of Sj
Γc×H by P j = (P j

1 , . . . , P j
I ). We give

the interpretation that for a recommendation and history of communication pair
j receives in P j

i , j thinks that i was deviating. Let Di = {(s, h) ∈ SΓc ×H|∀j ∈
−i (sj, h) ∈ P j

i }. That is, for recommendations and histories in Di all the players
in −i think that i was deviating. Of course, we want that if nobody deviates,
the probability of Di is 0 for all i ∈ I. Let D∗

i (l
i, f i) = {(s, h) ∈ Di|∃l−i :

P µ
(f i,id−i)

(l−i|li, si, h) 6= λ(l−i|li)} be the set of histories, where after detected

strange deviation f i, player i of type li can update his prior.

Definition 9 Given µ and a system of partitions (P j)j∈I such that P µ
id(Di) = 0

for all i, a strange deviation f i 6= idi of type li is punishable with probability at
least 1− z if:

1. it is detectable with probability at least 1− z: P µ
(f i,id−i)

(Di|li, l−i, si) > 1− z

for all l−i ∈ supp λ(.|li),

2. i can update his prior in Di with probability at most z: P µ
(f i,id−i)

(D∗
i (l

i, f i)|li, si) <
z.

We say, that µ is z−weakly secure if there is (P j)j∈I such that any strange
deviation of any player of any type is punishable with probability at least 1− z.

Lemma 2 For any q and z > 0 there is µ(q, z) ∈ ∆SextΓ mimicking q and strange
deviations are detectable with probability at least 1− z.

Proof: See the proof in the Appendix.

The connection between security and weak security can be partially understood
with the following 2 Lemmas.

Lemma 3 M(Γ) ⊆ INTIR(Γ).
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Proof: Given a communication equilibrium q and a type li then for any bi ∈ Ai

and l′i ∈ Li

gi[q|li] =
∑

l−i

λ(l−i|li)
∑

a

q(li, l−i)(a)gi(a, li, l−i) ≥

≥
∑

l−i

λ(l−i|li)
∑

ai,a−i

q(l′i, l−i)(ai, a−i)gi(bi, a−i, li, l−i) =

∑

l−i

λ(l−i|li)
∑

a−i

q(l′i, l−i)(a−i)gi(bi, a−i, li, l−i)

So let q−i(l−i)(a−i) = q(l′i, l−i)(a−i) for some l′i ∈ Li as punishment.

Suppose µ mimics q and player i of type li deviates strangely during the commu-
nication. If this misbehavior is detected by players −i before i would have learnt
any new information about l−i that is the recommendation, communication his-
tory pair is in Di \D∗

i (l
i, f i) then players −i can choose an action according to

q(l′i, l−i)(a−i) = q−i(l−i)(a−i) for some l′i independently of player i’s realized type
li. It does not matter what constant action bi is chosen by i, she is not better off
than gi[q|li] if q is a communication equilibrium. If g[q] ∈ SINTIR(Γ) then i is
strictly worse off. In short, players −i can punish deviations of i if the deviation
occurs and detected until i of type li believes λ(.|li) as the second property of
weak security requires. Note that player i cannot be punished with the profile
given above if i has already got to know his action ai that is in D∗

i (l
i, f i). This is

simply because i can condition his action on ai with some function r : Ai → Ai

which is in general strictly better than some constant action bi. Moreover, i
knows, that ai came from q, thus he can updated his information about l−i.

Definition 10 µ ∼ µ′ iff P µ
id = P µ′

id

Definition 11 g[q] is z−interim supportable iff for all i, li

zW i + (1− z)[zW i + (1− z)gi(li)] ≤ gi[q|li],

where W i = maxl∈L,ρ∈∆A gi(ρ, l).

Let G(q, z) = {Γ ∈ G(q)|g[q] z − interim supportable}

The rationale of this definition comes from the following Lemma:

Lemma 4 If µ is z-weakly secure c-protocol which mimics q then for any Γ ∈
G(q, z) there is a µ′ ∼ µ correlated equilibrium distribution of Γc if |I| = 2. If
|I| = 3 there exists µ′ correlated equilibrium distribution of Γc⊗cpublic where the
last stage of communication is used only in case of deviations under c, that is we
can write that µ′ ∼ µ.

14



Proof: The construction of such a µ′ is simple in the case of 2 players. One has
to define ρj on P j

i to be the appropriate punishments in Γ. Then a deviating
player gets at most W i with probability at most z, when the deviation was not
detected. With probability at most (1 − z)z he gets at most W i again, if the
deviation was detected but the deviator updated his prior. Finally receives his
punishment payoff with probability at least (1− z)(1− z).

The 3 players’ case is a bit more delicate, since players −i has to correlate
their punishment actions. It is simple if we allow the players to communicate
in pairwise channels, however it can be achieved without this assumption. See
the solution in the Appendix.

If the number of players is 2 and it is known or it is predictable with high prob-
ability for player i when the communication terminates, there are games10 Γ,
where certain types of i have incentives to deviate in the very last stage, where
updating happens. Doing so, i learns his action while −i does not get the proper
information to be able to calculate his action. Even if the deviation is detected,
−i cannot punish i.

Our solution for this problem is constructing a protocol where players cannot
predict when the communication terminates. More precisely, players do not know
in advance the stage at which they receive the relevant information from which
the actions are calculable, that is when updating their believes would be possible.
This can be achieved with a possibly infinitely long communication and random
termination times with uniformly small probabilities in each stage. This uncer-
tainty, of course, is introduced by the correlation device. The main idea of our
construction is that we hide the mimicking protocol among uninformative ones.
Doing so we can get a z−weakly secure protocol for any z > 0.

3.3 A Long Universal Mechanism with Punishment

Let µ(u, z) ∈ ∆SextΓ be the mediator which mimics u : L → ∆A such that for any
l, l′ ∈ L and a, a′ ∈ A u(l)(a) = u(l′)(a′) and strange deviations are detectable
with probabiliy at least 1 − z. That is u selects uniformly and independently
actions for any type-profile.

Lemma 5 µ(q, z), µ(u, z) ∈ ∆SextΓ mimicking q, u can be chosen in a way that
for all i, li, si ∈ SextΓ for all h = (h1, h2) ∈ H2

cpublic
= Q∪ U , where Q∩ U = ∅

1. µ(q, z)(si) = µ(u, z)(si)

2. P
µ(q,z)
id (h1|li, si) = P

µ(u,z)
id (h1|li, si)

10This problem does not arise if only one of the players has actions to take, see the construc-
tion in Forges (1985).
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3. P
µ(q,z)
id (Q|li, si) = 1, P

µ(u,z)
id (U|li, si) = 1

Proof: See the proof in the Appendix

Suppose s ∈ SextΓ is chosen according to µ(q, z) with probability z and according
to µ(u, z) with probability 1 − z. It follows from point 1 and 2 in the Lemma
that player i receiving recommendation si ∈ SextΓ still believes with probability
z, 1 − z that si was chosen according to µ(q, z) or µ(u, z). The same is true af-
ter observing h1 in the first stage of communication. However, after the second
stage, according to point 3, players know for sure, whether s was chosen accord-
ing to µ(q, z) or µ(u, z). The main idea in the construction of z−weakly secure
µ(z) ∈ ∆SEXTΓ which mimics q is as follows:

1. µ(z) chooses a time t∗ randomly according to a geometric distribution with
parameter z

2. for all t 6= t∗ µ(z) sends recommendations si
t ∈ SextΓ to the players according

to µ(u, z) which does not convey any information, while for t∗ it randomizes
according to µ(q, z) ∈ ∆SextΓ

In equilibrium:

1. players communicate according to si
t in stages 2t− 1, 2t

2. after each even stage players can decide if the two stages corresponded to
t∗ or not, but never before exchanging their messages in that stage (as
consequence of Lemma 3 players can check if the two stage history is in Q
or in U).

3. after stage 2t∗ or in case of detected deviation players decide to play in Γ and
play according to the recommendation of µ(q, z) or choose their punishment
actions

Lemma 6 µ(z) is z-weakly secure and mimics q.

Proof: It is obvious that µ mimics q. Property 1 of weak security is satisfied,
that is strange deviations are detectable with probability at least 1 − z, since
µ(q, z), µ(u, z) satisfies this requirement. For property 2, it is clear that if a
deviation is detected at a stage, where µ(z) randomized according to µ(u, z) the
deviator cannot update his prior. The probability that a deviation f i finds t∗

and it is not detected in stages 2t− 1, 2t < 2t∗ is clearly less than z.

Remark 1 Notice, that if t∗ can be chosen uniformly from the interval [0, 1],
then any deviation on a countable subset of [0, 1] finds t∗ with probability 0. For
each such deviation at each stage there is a positive probability of being detected
and punished. On an infinite countable set the probability of detection is 1. Thus,
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even players who cannot be strictly punished can find profitable deviations11 with
probability 0.

We can prove Theorem 1 as a Corollary of the Lemmas.

Proof of the Theorem: For any Γ and q for which g[q] ∈ ME(Γ)∩SINTIR(Γ)
there is a z such that Γ ∈ G(q, z). By Lemma 2 we have µ(q, z) correlated proto-
col mimicking q, where deviations are detectable with probability at least 1− z.
By Lemma 6 we can construct a z−weakly secure protocol µ(z). Finally by
Lemma 4 there is µ′(z) ∈ ∆SEXTΓ such that g[q] ∈ BE((EXTΓ)µ′(z)) that is
g[q] ∈ CE(EXTΓ). According to the remark, if t∗ ∼ U [0, 1], the argument above
holds for any q for which Γ ∈ G(q, 0) that is g[q] can be in INTIR(Γ).
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4 Appendix

We have to prove Lemma 1,2 and 5. We also have to prove Lemma 4 for |I| = 3.
Clearly, Lemma 1 follows from Lemma 2.

Proof of Lemma 2: µ(q, z) selects:
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1. randomly, uniformly a permutation of the elements of Li say ηi for each i
independently. Let η = (ηi)i∈I .

2. aη(l) according to q(l)

3. randomly, uniformly 2 permutations of the elements of Ai for each l ∈ L
and for each i independently say (φi

l, ψ
i
l)l∈L,. Let φl = (φi

l)i∈I , ψl = (ψi
l)i∈I .

Let
bη(l) = ψη(l)(φη(l)(aη(l)))

4. codes randomly, uniformly from Z ⊂ N, where 1
|Z| < z: ki(η(l), bi) for all

i, l and all bi ∈ Ai and Ki(η(l), ψi) for all i, l and all ψi with the restriction
that for all i, j ∈ I:

ki(η(l), bi
η(l)) = kj(η(l), bj

η(l))

5. if |I| = 2,µ(q, z) sends for all l ∈ L, si =

ηi, φi
η(l),

ki(η(l), .), Ki(η(l), .),

b−i
η(l), k

−i(η(l), b−i
η(l)),

ψ−i
η(l), K

−i(η(l), ψ−i
η(l)),

to player i.

After receiving si, the communication unfolds as follows if |I| = 2. Let for all i,
player i of type li announce publicly mi

1(l
i) = ηi(li) in stage 1.

The communication protocol in stage 2 prescribes that after the announcement
h1 = η(l) in stages 1 player i publicly announces mi

2(h1)(l
i) =:

b−i
η(l), k

−i(η(l), b−i
η(l)),

ψ−i
η(l), K

−i(η(l), ψ−i
η(l)).

player i′s decision rule is defined as:

ρi(si, h) = φi−1

η(l)(ψ
i−1

η(l)(b
i
η(l))) = ai

η(l).

which was selected according to q(l). Formally, we can define P j
i naturally

{(sj, h)|kj(η(l), bj) 6= kj or Kj(η(l), ψj) 6= Kj}, where mi
2 = (bj, ψj, kj, Kj) is

the announcement of player i in stage 2 and h1 = η(l). In words, player j thinks
that i deviated, if the codes kj, Kj announced by i do not coincide with the value
of kj(., .), Kj(., .) at η(l), bj, ψj.

If |I| = 3 we impose the following modifications on µ(q, z) and on the com-
munication.
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5. if |I| = 3,µ(q, z) sends for all l ∈ L, si =

ηi, φi
η(l),

ki(η(l), .), K i(η(l), .),

b−i
η(l), k

i mod 3 +1(η(l), bi mod 3 +1
η(l) ),

ψ−i
η(l), K

i mod 3 +1(η(l), ψi mod 3 +1
η(l) ),

to player i.

Let for all i, player i of type li announce publicly ηi(li) in stage 1 as in the case
of 2 players. Then if |I| = 3, players are prescribed to publicly announce in stage
2 mi

2(h1)(l
i) =:

bi mod 3 +1
η(l) , ki mod 3 +1(η(l), bi mod 3 +1

η(l) ).

ψi mod 3 +1
η(l) , Ki mod 3 +1(η(l), ψi mod 3 +1

η(l) ),

player i′s decision rule is:

ρi(si, h)(li) = φi−1

η(l)(ψ
i−1

η(l)(b
i
η(l))) = ai

η(l).

which was selected according to q(l). That is, 1 sends to 2, 2 to 3 and 3 to 1
the relevant information. Notice also that, players only know one code and their
own code function. P j

i can be defined similarly to the case of 2 players with the
following modification. Suppose that 1 deviates and 2 detects it because 1 have
sent a wrong code. 3 also knows that 1 was deviating because 3 knows b2

η(l).

Proof of Lemma 4: Fix a Γ ∈ G(q, z), and (q−i(l−i)l−i∈L−i)i∈I punishment
distributions. Let µ′ select additionally to µ for all i ∈ I and l−i ∈ L−i

1. (ηi) permutations of Li

2. p−i
η−i(l−i)

∈ A−i according to q−i(l−i)

3. randomly and uniformly a permutation ϕj
l−i of the elements of Aj for j ∈ −i

and let
dj

η−i(l−i)
= ϕj−1

η−i(l−i)(p
j
η−i(l−i)

)

Then µ′ sends ηj1 , dj2
η−i(l−i)

, ϕj1
η−i(l−i)

to player j1 6= j2 ∈ −i.

In case j1, j2 ∈ −i detected that i was deviating in the communication during c,
then j1, j2 of type lj1 , lj2 publicly announces ηj1(lj1), (dj2

η−i(l−i)
)l−i∈L−i , ηj2(lj2), (dj1

η−i(l−i)
)l−i∈L−i

and calculate and play the punishment action p−i
ηj1 (lj1 ),ηj2 (lj2 )

which was selecting

according to q−i(l−i). Notice that after the public communication of j1, j2 in the
last stage, player i of type li believes λ(l−i|li) about l−i and

∑
l−i∈L−i λ(l−i|li)q−i(l−i)(p−i)
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about p−i.

Proof of Lemma 5: The construction of µ(u, z) is the same as that of µ(q, z).
We have to modify step 2 and step 4. In step 2, aη(l) is chosen according to u(l),
that is uniformly from the set of action profiles. In step 4, the code functions ki

are chosen to satisfy the following conditions:

1.
ki(η(l), bi

η(l)) 6= kj(t, η(l), bj
η(l))

2. if |I| = 2 we require that there are b1 ∈ A1, b2 ∈ A2 such that:

k1(η(l), b1
η(l)) = k2(η(l), b2),

k2(η(l), b2
η(l)) = k1(η(l), b1),

3. if |I| = 3 there exists b1 ∈ A1, b2 ∈ A2, b3 ∈ A3:

k3(η(l), b3
η(l)) = k2(η(l), b2),

k1(η(l), b1
η(l)) = k3(η(l), b3),

k2(η(l), b2
η(l)) = k1(η(l), b1).

We can thus define Q = {(h1, h2) ∈ H2|ki = kj,∀i, j ∈ I} and U = {(h1, h2) ∈
H2|∃i, j ∈ I : ki 6= kj, }, where (ki)i∈I are the codes corresponding to (bi)i∈I

announced in stage 2. Clearly µ(u, z), µ(q, z),Q,U satisfy conditions 1,2 and 3
in the Lemma.
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