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Abstract

This paper explores the local stability properties of the steady state in the two-
sector neoclassical growth model with sector–specific externalities. We show
analytically that capital adjustment costs ofany size preclude local indetermi-
nacy nearby the steady state for every empirically plausible specification of the
model parameters. More specifically, we show that when capital adjustment
costs ofanysize are considered, a necessary condition for local indeterminacy is
an upward-sloping labor demand curve in the capital-producing sector, which in
turn requires an implausibly strong externality. We show numerically that capital
adjustment costs of plausible size imply determinacy nearby the steady state for
empirically plausible specifications of the other model parameters. These find-
ings contrast sharply with the previous finding that local indeterminacy occurs
in the two-sector model for a wide range of plausible parameter values when
capital adjustment costs are abstracted from.

Keywords:capital adjustment costs; determinacy; externality; local indetermi-
nacy; stability.

JEL classification:E0; E3.
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1 Introduction

In this paper, we study the local stability of the steady state of the neoclassical
growth model. Local stability analysis provides important information about
the local uniqueness of equilibrium close to the steady state and about the type
of business cycles that can occur in the model economy. In particular, if the
steady state is saddle–path stable, then all nearby equilibria are locally unique,
or determinate. With determinacy, business cycles require shocks to total factor
productivity and they are typically efficient. It has been argued that this type
of business cycle should not be stabilized. In contrast, if the steady state is sta-
ble, then a continuum of nearby equilibrium paths converge to the steady state
implying a severe form of local non-uniqueness of equilibrium that is called
local indeterminacy. With local indeterminacy, business cycles can originate
from self-fulfilling shocks to individual beliefs and they can be inefficient. It
has been argued that this second type of business cycle should be stabilized.
Since both determinacy and local indeterminacy are theoretically possible, we
ask which of them prevails for empirically plausible choices of the parameter
values.

We focus our attention on a class of two-sector neoclassical growth mod-
els with sector–specific positive externalities, in which one sector produces a
consumption good and the other sector produces the capital goods for both
sectors. This class of models has been the focus of recent research on self-
fulfilling business cycles; see e.g. Benhabib and Farmer (1996), Perli (1998),
Weder (1998), Schmitt-Grohe (2000), and Harrison and Weder (2001). The
reason is that local indeterminacy can occur for mild, empirically plausible ex-
ternalities in the capital–producing sector, which are consistent with downward
sloping labor demand curve. In contrast, in the class of standard one-sector
neoclassical growth models, local indeterminacy requires the strengths of the
externalities to be higher than is empirically plausible; see e.g. Benhabib and
Farmer (1994) and Farmer and Guo (1994). In fact it requires such strong ex-
ternalities that the labor demand curve becomes upward sloping, which leads to
awkward economic implications [Aiyagari (1995)].1

Our main finding is that the occurrence of local indeterminacy in the two–

1For other versions of the neoclassical growth model, Boldrin and Rustichini (1994) and Benhabib et al. (2000)
find the same difference: local indeterminacy is easier to obtain in two- than in one-sector versions. For a detailed
review of this literature, see Benhabib and Farmer (1999).
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sector neoclassical growth model depends critically on the shape of the produc-
tion possibility frontier between the two new capital goods. Specifically, we
show two results. Our first result is analytical: we find that if the production
possibility frontier between the two capital goods is strictly concave (meaning
that the two capital goods are imperfect substitutes), then local indeterminacy
does not occur for degrees of increasing returns that are consistent with down-
ward sloping labor demand curve. This is in sharp contrast to the model with
a linear production possibility frontier (meaning that the two capital goods are
perfect substitutes) where local indeterminacy can occur for downward sloping
labor demand curve. Our second result is numerical: in a standard calibration
of the model, equilibrium is determinate for empirically plausible values of the
externalities and the curvature of the production possibility frontier. This result
is robust to reasonable changes in the parameter values used.

The economic relevance of our findings lies in the fact that the strict concav-
ity of the production possibility frontiers arises naturally when capital adjust-
ment costs at the sector level are considered. In this paper, we consider a gener-
alized form of the intratemporal capital adjustment costs suggested by Huffman
and Wynne (1999).2 One way to interpret our result therefore is that capital
adjustment costs at the sector level ofanysize preclude local indeterminacy for
empirically plausible parameter choices. The presence of capital adjustment
costs at the sector level can be justified in three ways. First, there is substantial
empirical evidence in favor of the existence of capital adjustment costs at the
firm level; see Hammermesh and Pfann (1996) for a review of the evidence.
Second, without capital adjustment costs at the sector level the ratio of the price
of installed capital to the price of new capital (“Tobin’s q”) is constant over
the business cycle, which is counterfactual. Third, without capital adjustment
costs at the sector level the class of two-sector models considered here has sev-
eral counterfactual properties that disappear when capital adjustment costs are
modeled [Huffman and Wynne (1999) and Boldrin et al. (2001)].

The intuition for our main result is closely linked to the relationship between
the the composition of the capital–producing sector’s output and the ratio of the
relative prices of the two new capital goods. Specifically, if the production
possibility frontier between the two capital goods is linear, then the relative

2In a companion paper, Herrendorf and Valentinyi (2002), we consider standard intertemporal capital adjust-
ment costs of the form suggested by Lucas and Prescott (1971). We find that they make the results obtained in this
paper even stronger in that it becomes even harder to get local indeterminacy.
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price ratio is constant and the ratio of the new capital goods can be chosen
independently of the realization of the contemporaneous relative price ratio.
In contrast, if the production possibility frontier is strictly concave, then the
contemporaneous relative price ratio is a function of the ratio of the new capital
goods. In other words, replacing a linear production possibility frontier by a
strictly concave one eliminates one degree of freedom from the model economy.
Our results show that this implies that local indeterminacy becomes impossible
for plausible parameter choices.

The articles most closely related to our study are Kim (1998), Wen (1998),
and Guo and Lansing (2001), who study the implications of convex capital
adjustment costs for the local stability properties of the one-sector neoclassical
growth model with an externality. These papers have one key result in common:
given a strength of increasing returns that implies local indeterminacy, there is a
strictly positive, minimum size of the capital adjustment costs that makes local
indeterminacy impossible. We find that costs of adjusting the sectors’ capital
stocks have a very different effect in the two–sector neoclassical growth model:
given a strength of increasing returns that implies local indeterminacy without
capital adjustment costs, introducing arbitrarily small capital adjustment costs
makes local indeterminacy impossible.

The rest of the paper is organized as follows. Section 2 lays out the eco-
nomic environment. Section 3 reports our analytical results. Section 4 reports
our numerical results. Section 5 concludes the paper.

2 Environment

Time is continuous and runs forever. There are continua of measure one of
identical, infinitely-lived households and of two types of firms. Firms of the
first type produce a perishable consumption good and firms of the second type
produce new capital goods. The representative household is endowed with the
initial capital stocks, with the property rights for the representative firms, and
with one unit of time at each instant. We assume that installed capital is sector
specific, which is consistent with the evidence collected by Ramey and Shapiro
(2001) that it is very costly to reallocate installed capital to other sectors. At
each point in time five commodities are traded in sequential markets: the con-
sumption good, the new capital good suitable for the production of consumption
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goods, the new capital good suitable for the production of new capital goods,
working time in the consumption-producing sector, and working time in the
capital–producing sector.

The representative household solves:

max
{ct,lct,lxt,xct,xxt,kct,kxt}

∞
t=0

∫ ∞
0

e−ρt [
ct exp(1−lct−lxt)]1−σ

−1
1−σ dt (1a)

s.t. ct + pctxct + pxtxxt = πct + πxt + wctlct + wxtlxt + rctkct + rxtkxt, (1b)

k̇ct = xct − δckct, k̇xt = xxt − δxkxt, (1c)
kc0 = k̄c0 given, kx0 = k̄x0 given, (1d)
0 ≤ ct, lct, lxt, xct, xxt, kct, kxt, lct + lxt ≤ 1. (1e)

The notation is as follows:ρ > 0 is the discount rate andσ ≥ 0 is the elas-
ticity of intertemporal substitution;ct denotes the consumption good at time
t (which is the numeraire); the subscriptsc and x indicate variables from the
consumption-producing and the capital–producing sector;lct and lxt are the
working times,wct andwxt are the wages,xct andxxt are the new capital goods,
pct and pxt are the relative prices of the new capital goods,kct andkxt are the
capital stocks,rct andrxt are the real interest rates,δc andδx are the depreciation
rates, andπct andπxt are the profits (which will be zero in equilibrium).

Two features of the representative household’s problem deserve further com-
ment. First, we restrictxct and xxt to be non-negative, meaning that installed
capital is sector specific. Nevertheless the capital stock of a sector can be re-
duced by not replacing depreciated capital, so close to the steady state (the
existence of which we will prove below) the non–negativity constraints will not
be binding. Second, we choose the functional form for utility that is consistent
with the existence of a balanced growth path and implies an infinite elasticity
of labor supply.3 The reason for focusing on infinite labor supply elasticity is
that the existing studies identify this to be the best case for local indeterminacy.
An economic justification for infinite labor supply elasticity is the lottery argu-
ment of Hansen (1985). Asσ converges to 1, our functional form converges
to log(ct) + 1− lct − lxt, which is the specifications most commonly used in the
literature.4

3King et al. (1988) show that for a balanced growth path to exist the instantaneous utility must take the form
1

1−σ [ct exp(ϕ(1− lct − lxt))]1−σ whereϕ is an increasing function.
4We have also experimented with a specification of the instantaneous utility that is not consistent with balanced
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Denoting byµct andµxt the current value multipliers attached to the accu-
mulation equations (1c), the necessary and sufficient conditions for the solution
to the household’s problem are (1b)–(1e) and

pct

ct
= µct,

pxt

ct
= µxt, (2a)

ct = wct = wxt, (2b)
µ̇ct ≤ µct(δc + ρ) −

rct

ct
(with equality if xct > 0), (2c)

µ̇xt ≤ µxt(δx + ρ) −
rxt

ct
(with equality if xxt > 0), (2d)

lim
t→∞

pctkct

ct
= lim

t→∞

pxtkxt

ct
= 0. (2e)

Note that, as usual, the dynamic first–order conditions (2c) and (2d) hold only
for t > 0.

We now turn to the production side of the model economy. The problem of
the representative firm of the consumption-producing sector is:

max
ct,kct,lct

πct ≡ ct − rctkct − wctlct (3a)

s.t. ct = Atk
a
ctl

1−a
ct , (3b)

ct, lct, kct ≥ 0, (3c)

whereAt ≥ 0 denotes total factor productivity in the sector anda ∈ (0,1). The
necessary and sufficient conditions for a solution are (3b), (3c), and

rct = aAtk
a−1
ct l1−a

ct , (4a)
wct = (1− a)Atk

a
ctl
−a
ct . (4b)

The problem of the representative firm of the capital–producing sector is:

max
xxt,xct,lxt,kxt

πxt ≡ pxtxxt + pctxct − rxtkxt − wxtlxt (5a)

s.t. f (xct, xxt) = Btk
b
xtl

1−b
xt , (5b)

xxt, xct, kxt, lxt ≥ 0, (5c)

whereBt ≥ 0 denotes total factor productivity in the sector,b ∈ (0,1), and
f is a twice continuously differentiable function that is non-negative, increas-
ing in both arguments, linear homogeneous, and quasi-convex. Denoting the

growth, notablyc1−σ
t −1
1−σ +1− lct− lxt. Our results turn out to be robust as long asσ is not chosen to be unreasonably

small.
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multiplier attached to (5b) byλt, the necessary and sufficient conditions for the
solution to problem (5) are (5b), (5c), and

rxt = λtbBtk
b−1
xt l1−b

xt , (6a)

wxt = λt(1− b)Btk
b
xtl
−b
xt , (6b)

pct ≤ λt fc(xct, xxt) (with equality if xct > 0), (6c)
pxt ≤ λt fx(xct, xxt) (with equality if xxt > 0), (6d)

where fc and fx denote the partial derivatives off with respect toxct andxxt.
The assumption of quasi-convexity implies that for givenf̄ ∈ R+ the lower

sets{(xxt, xct) ∈ R2
+| f (xxt, xct) ≤ f̄ } are convex, so the production possibility

frontier between the two new capital goods,xct andxxt, is concave. The standard
assumption in the literature is thatf is linear:

f (xct, xxt) = fcxct + fxxxt, (7)

where fc and fx are positive constants, which are often set to one.5 If f is linear,
then the production possibility frontier between the two new capital goods is
linear too. Our innovation in this paper is to consider the case of non-linear,
strictly quasi-convex functionsf . An example is

f (xct, xxt) =
(
fcx

1+ε
ct + fxx

1+ε
xt

) 1
1+ε , (8)

whereε is a positive constant. Iff is strictly quasi–convex, then the produc-
tion possibility frontier between the two new capital goods becomes strictly
concave. Given that capital is assumed to be sector specific, a strictly con-
cave production possibility frontier generates capital adjustment costs. To see
this, suppose that the capital stocks of both sectors are constant, so that the
production of new capital goods just makes up for the depreciation of capital.
Suppose then that today the capital stock in the consumption-producing sector
is reduced by 1 unit. Since capital is sector–specific, installed capital cannot be
moved across sectors. Thus, the past production of new capital goods for the
consumption-producing sector is to be reduced by 1 unit. With a linear pro-
duction possibility frontier, this implies that the production of capital goods for

5The choice offc and fx amounts to a choice of the units in whichxct andxxt are denominated. This choice
does not matter for the local stability properties of the steady state.
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the capital–producing sector increases byfc
fx

units; the change in the two capi-
tal stocks is then costless. With a strictly convex production possibility frontier,
this implies that the production of capital goods for the capital–producing sector
increases by less thanfcfx

units; the change in the two capital stocks is therefore
costly. It is important to realize that it remains costless to change the total output
of the capital–producing sector as long as its composition is not changed. This
is due to the linear homogeneity off . Therefore, the capital adjustment costs
implied by a strictly quasi–convexf areintratemporal, not intertemporal.6

There are several justifications for modeling capital adjustment costs at the
sector level. First, there is substantial microevidence that firms’ adjustment time
to stochastic disturbances exceeds by far the length of one year, and hence the
maximal length of a period in real business cycle models [Hammermesh and
Pfann (1996)]. Second, without capital adjustment costs the ratio of the price
of installed capital to the price of new capital (“Tobin’s q”) is constant, which
is counterfactual. Third, two-sector neoclassical growth models without capital
adjustment costs allow for the costless reallocation of capital across sectors.
This leads to countercyclical consumption and excessive investment volatility,
which are counterfactual. Huffman and Wynne (1999) show that these problems
are resolved when one introduces intratemporal capital adjustment costs of the
form (8).7

The total factor productivities are specified so that there can be positive
externalities at the level of each sector:

At = kθcact lθc(1−a)
ct , Bt = kθxbxt lθx(1−b)

xt , (9)

whereθc, θx ≥ 0. Substituting (9) back into the production functions, the sec-
tors’ aggregate outputs become:

ct = kα1
ct l
α2
xt , α1 ≡ (1+ θc)a, α2 ≡ (1+ θc)(1− a), (10a)

xt = kβ1
xt l
β2
xt , β1 ≡ (1+ θx)b, β2 ≡ (1+ θx)(1− b). (10b)

Several clarifying remarks are at order. First, (9) implies that the external-
ities on capital and labor are the same. The reason for this assumption is that

6In Herrendorf and Valentinyi (2002), we consider standard intertemporal capital adjustment costs of the form
suggested by Lucas and Prescott (1971) and find that the results obtained in this paper are robust with respect to
this modification.

7Fisher (1997) makes a related point for a two–sector neoclassical growth model with home production and
market production.
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separate estimates for the strength of the resulting increasing returns do not ex-
ist.8 Second, conditions (6b) and (9) imply that the labor demand curve in the
capital–producing sector is downward sloping forθx < b

1−b and upward sloping
for θx > b

1−b. Using (10b), these two conditions equivalently can be written as
β2 < 1 andβ2 > 1. Our main result will show that if the labor demand curve
in the capital–producing sector slopes downward the local stability properties
of the steady state are strikingly different depending on whetherf is linear or
strictly quasi-concave. This result is important in applications becauseθx >

b
1−b

is not plausible empirically and its implications contradict the business cycle
facts [see our discussion of empirical plausible increasing returns in Section 4
and the discussion in Aiyagari (1995), respectively]. Third, the externalities are
not taken into account by the firms, so a competitive equilibrium exists and in
equilibrium profits are zero and the capital and labor shares are the usual ones:
rctkxt

ct
= a, wctlxc

ct
= 1− a, rxtkxt

kt
= b, wxtlxt

kt
= 1− b. In a competitive equilibrium the

total factor productivities on which the firms base their decisions must be equal
to those that results from these decisions:

Definition 1 (Competitive equilibrium) A competitive equilibrium is a collec-
tion of prices{wct,wxt,rct, rxt, pct, pxt}

∞
t=0, allocations{ct, lct, lxt, xct, xxt, kct, kxt}

∞
t=0,

and total factor productivities{At,Bt}
∞
t=0 such that:

(i) {ct,lct,lxt, xct, xxt, kct, kxt}
∞
t=0 solve the problem of the representative house-

hold, (1);
(ii) {ct, lct, kct}

∞
t=0 solve the problem of the representative firm of the consump-

tion-producing sector,(3);
(iii) {xxt, xct, lxt, kxt}

∞
t=0 solve the problem of the representative firm of the capi-

tal–producing sector,(5); (iv) At and Bt are determined consistently, that
is, the two equations in(9) hold.9

8The results of Harrison and Weder (2001) suggest that imposing this constraint does not affect the stability
properties of the steady state of the two-sector neoclassical growth model without capital adjustment costs in an
important way.

9Note that since we have two sectors here, market clearing is automatically satisfied when the firms’ production
constraints are satisfied. Thus, we do not need to specify an economy-wide resource constraint.

8



3 Analytical Results

3.1 Local stability properties

We start by establishing that there is a unique steady state and by deriving the
reduced-form equilibrium dynamics nearby.

Proposition 1 (Reduced–form dynamics)

(i) There is a unique steady state.
(ii) If f is linear, then there is a neighborhood of the steady state such that the

equilibrium reduced–form dynamics can be described by the dynamics
of the state variable kt ≡ fckct + fxkxt and the dynamics of the control
variableµct.

(iii) If f is strictly quasi convex, then there is a neighborhood of the steady
state such that the equilibrium reduced–form dynamics can be described
by the dynamics of the two state variables kct and kxt and the two control
variablesµct andµxt.

Proof. See the Appendix A.
The proposition shows that the equilibrium reduced–form dynamics close to

the steady state are two dimensional whenf is linear and four dimensional when
f is strictly quasi convex. The reason for this difference is as follows. With a
linear f the ratio between the shadow prices of the two new capital stocks is
constant, implying that only one of them is needed. Moreover, the ratio of the
two shadow prices at any point in time does not determine the composition of
the capital–producing sector’s output of new capital goods. Consequently, if
t > 0 any allocation of the aggregate capital stock across the two sectors can
be achieved by choosing the right composition of the past outputs of the capital
producing–sector, implying that only the aggregate capital stock is needed as a
state. Note that for this to be the case, the model economy needs to be close
to the steady state where the non-negativity constraints on the two new capital
goods do not bind because the two existing capital stocks can be reduced by as
much as desired by not replacing depreciated capital.10

10Note also that this argument does not hold att = 0 when bothkc0 andkx0 are given because installed capital
is assumed to be sector–specific. This is different from the version of the two–sector model in which capital is not
sector–specific. In this case, only the aggregate capital stock matters att = 0. Christiano (1995) shows that this
difference does not matter for the stability properties of the steady state.
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With a strictly quasi–convexf , the equilibrium reduced–form dynamics are
four dimensional for the following reasons. First, the ratio of the shadow prices
of the two new capital goods is not constant, implying that both shadow prices
are needed to describe the dynamics. Second, the ratio of the two shadow
prices at any point in time uniquely determines the composition of the capital–
producing sector’s output of new capital goods at that point in time. This fol-
lows from the fact that combining (2a), (6c), and (6d) (the last two with equal-
ity) results in

µct

µxt
=

fc
( xct

xxt
,1
)

fx

( xct

xxt
,1
) . (11)

Consequently, the capital stocks of both sectors become state variables.
We now explore analytically the stability properties of the steady state. The

steady state is saddle–path stable if there are as many stable roots (i.e. roots
with negative real part) as states and as many unstable roots (i.e. roots with
positive real part) as controls. The steady state is stable if there are more stable
roots than states and it is unstable if there more unstable roots than controls.
If the steady state is saddle–path stable then the equilibrium is determinate,
that is, given the initial capital stocks close to the steady state values there
are unique initial shadow prices such that the model economy converges to
the steady state. If the steady state is stable, then the equilibrium is locally
indeterminate, that is, given the initial capital stocks close to the steady state
values there exists a continuum of shadow prices such that the model economy
converges to the steady state. Since it is not feasible to compute analytically
the four eigenvalues, we will only compute the determinant and the trace of
the linearization of the reduced-form equilibrium dynamics at the steady state.
Although this does not allow for a full characterization of the local stability
properties, it provides important information because the determinant equals
the product of the eigenvalues and the trace equals the sum of the real parts
of the eigenvalues (complex eigenvalues occur in conjugates, implying that the
imaginary parts cancel in the summation). This leads to the next proposition,
which constitutes the main result of our paper.
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Proposition 2 (Local stability properties of the steady state)Suppose that
b < 1− b andθx ∈ [0, 1−b

b ).

(i) Suppose that f is linear.
There are constants

¯
θx ∈ (0, b

1−b) and θ̄x ∈ (− ρb
ρb+δx
, 1−b

b ) such that:

(i.a) if
(ρ + δx)[ρ + (1− b)δx] >

ρb+δx

ρ
bδc(ρ + δc),

then
¯
θx < θ̄x and the steady state is saddle–path stable forθx ∈

[0,
¯
θx), stable forθx ∈ (

¯
θx, θ̄x), and unstable forθx ∈ (θ̄x, 1−b

b );

(i.b) if
(ρ + δx)[ρ + (1− b)δx] <

ρb+δx

ρ
bδc(ρ + δc),

then θ̄x < 0 <
¯
θx and the steady state is saddle–path stable for

θx ∈ [0,
¯
θx) and stable forθx ∈ (

¯
θx,

1−b
b ).

(ii) Suppose that f is strictly quasi–convex.

(ii.a) θx ∈ [0, b
1−b) is a necessary condition for the steady state to be

saddle–path stable;

(ii.b) θx ∈ ( b
1−b,

1−b
b ) is a necessary condition for the steady state to be

stable.

Proof. See the Appendix B.
We begin the discussion of our main results by noting that calibrations of

our two-sector model that are typical in the business cycle and growth literature
are consistent with the assumptionsb < 1 − b andθx < 1−b

b .11 The inequality
b < 1−b ensures that the capital share in the capital–producing sector’s income
is smaller than one half and thatb1−b <

1−b
b . The inequalityθx < 1−b

b ensures that
the aggregate returns to capital are less than one so there cannot be endogenous
growth in steady state. As pointed out before, there are two relevant subcases
of θx < 1−b

b : for θx ∈ [0, b
1−b) the labor demand curve of the capital–producing

sector slopes downward and forθx ∈ ( b
1−b,

1−b
b ) it slopes upward.

11Below we will discuss calibration issues in more detail.
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We continue the discussion of this proposition with the case of a linearf
(part (i) of the proposition). It says that if the labor demand curve in the capital–
producing sector slopes downward, then the steady state can be saddle–path
stable, stable, or unstable.12 The key part of this statement is that a linearf
allows for a stable steady state and therefore for local indeterminacy at the
steady state when the labor demand curve in the capital–producing sector slopes
downward. This replicates the result of the recent literature on self–fulfilling
business cycles; see for example Benhabib and Farmer (1996) and Harrison
and Weder (2001).

We conclude the discussion of our results with the case of a strictly–quasi
convex f (part (ii) of the proposition). It says that if the labor demand curve in
the capital–producing sector slopesupward, then the steady state can be stable
or unstable but not saddle–path stable; if the labor demand curve in the capital–
producing sector slopesdownward, then the steady state can be saddle–path sta-
ble or unstable but not stable. Thus, a strictly–quasi convexf rules out local in-
determinacy at the steady state if labor demand curve slopes downward. This is
our key analytical result, which holds foranystrictly quasi–convexf , and thus
for intratemporal capital adjustment costs ofanypositive size. In other words,
the local stability properties of the two–sector neoclassical growth model with
strictly quasi–convexf differ strikingly from those with a linearf . In fact,
the local stability properties of the two–sector real business cycle model with
strictly quasi–convexf are much more like those of the one-sector neoclassical
growth model without capital adjustment costs, in which local indeterminacy
requires an upward-sloping labor demand curve [Benhabib and Farmer (1994)].

3.2 Intuition

Here we seek to understand why a strictly quasi–convexf precludes the pos-
sibility of local indeterminacy for moderate externalities that leave the labor
demand of the capital–producing sector downward sloping. We start by demon-
strating that as the model economies with strictly quasi–convexf converge to
that with a linearf , the steady states behave continuously. So a discontinuity at
the steady state cannot be the explanation of our results. In order to be able to

12It is easy verify using the results from Appendix B that ifρ[ρ + (1− b)δx] > bδc(ρ + δc), thenθ̄ < b
1−b and the

steady state can be unstable under downward sloping labor demand curve.
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establish this, we need to specify what we mean by convergence.

Assumption 1 (Convergence to a linearf) Consider a linear function f: R2
+

−→ R+ with f(xct, xxt) = fcxct + fxxxt where fc, fx ≥ 0, denote the steady state
values of the new capital goods in the associated model economy by(xc, xx), and
let U(xc, xx) be a small open neighborhood of(xc, xx). Furthermore, consider
a sequence{ fi}∞i=1 of functions fi : R2

+ −→ R+ that are non-negative, linear
homogeneous, twice continuously differentiable, and strictly quasi-convex.

We say that{ fi}∞i=1 converges to f on U(xc, xx) if and only if each of{ fi}∞i=1,
{ fc,i}∞i=1, { fx,i}

∞
i=1, { fcc,i}

∞
i=1, { fxx,i}

∞
i=1, and{ fcx,i}

∞
i=1 converge in the supremum norm

defined over U(xc, xx) to f , fc, fx, fcc, fxx, and fcx, respectively.

Proposition 3 (Continuity of the steady states)Consider a sequence of func-
tions { fi}∞i=1 of the form assumed in Assumption 1. Then the sequence of the
steady states of the economies with fi converges to the steady state of the model
economy with f .

Proof. See the Appendix C.
To find the explanation for our results, it is useful to recall how local inde-

terminacy can occur for mild strengths of the externality with a linearf .13 So
suppose the model economy is in steady state and ask whether there can be other
equilibrium paths with the same initial capital stocks equal to their steady state
values but temporarily higher capital stocks subsequently. For such paths to
exist, the compositions of the capital outputs need to be changed. In particular,
more capital goods for the capital–producing sector need to be produced ini-
tially and fewer capital goods for this sector need to be produced subsequently.
The resulting higher and then a lower capital stocks in the capital producing-
sector imply that consumption growth is first lower and then higher. In order
to make such paths optimal for the representative household there must first be
higher and then lower returns on capital. They can come about because the
aggregate production possibility frontier (henceforth PPF) between consump-
tion and composite capital goods is strictly convex and the relative price of the
two new capital goods is constant irrespective of the composition of new cap-
ital output. Specifically, given these features, lower (higher) consumption–to–
capital–goods ratios are associated with lower (higher) relative prices of capital

13This follows Christiano (1995).
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goods in terms of consumption, so capital gains result that generate the required
movements of the returns to capital.

Two crucial ingredients bring about the capital gains whenf is linear. First,
the production possibility frontier between new capital goods and consumption
is strictly convex at the steady state. This ingredient is also present whenf is
strictly quasi–convex but almost linear.

Proposition 4 (Continuity of the PPF)Consider a sequence of functions{ fi}∞i=1
of the form assumed in Assumption 1. Providing xct, xxt > 0, the sequence of the
production possibility frontiers of the economies with fi converges on U(xc, xx)
to the production possibility frontier of the model economy with f .

Proof. See the Appendix D.
The second crucial ingredient that brings about the capital gains whenf is

linear is that the composition of new capital goods can be changed indepen-
dently of the relative price of the two capital goods,pxt

pct
. Formally this follows

from the fact that with a linearf the ratio between the two capital goods,xxt

xct
,

is not determined by the realizations of the other variables up to datet. This
second ingredient is not present whenf is strictly quasi convex — instead, the
relative price ratio at datet uniquely determines the investment ratio:

xxt

xct
= g
(
µxt

µct

)
= g
(

pxt

pct

)
. (12)

To see how this rules out alternative paths, note that (12) implies that the initial
increase in the production of capital goods for the capital–producing sectors is
now associated with anincreasein pxt

pct
. Therefore, to make the representative

household indifferent between holding the two capital goods, there now needs
to be a stronger capital gain on capital goods for the capital–producing sec-
tor than on those for the consumption–producing sector. From (12) this must
be associated with a further increase in the production of capital goods for the
capital–producing sector relative to the other ones. As a result, such alterna-
tive paths can never return to the steady state and so violate the transversality
condition.

It should be pointed out that this intuition works for arbitrarily small effects
of changes inxxt

xct
on pxt

pct
, and thus for arbitrarily small intratemporal capital ad-

justment costs. It should also be pointed out that this intuition carries over to
models with more than two sectors and more than two capital goods. Small

14



intratemporal capital adjustment costs between any pair of capital goods would
then also determine uniquely the ratio of any two different capital goods. Since
this is the key mechanism behind our result, we conjecture that arbitrarily small
capital adjustment costs could also be used to obtain determinacy when there
are more than two sectors.

4 Numerical Results

The analytical results derived so far for strictly quasi–convex functionsf do
not settle the question whether the steady state of the class of two-sector neo-
classical growth models with sector–specific externalities is saddle–path stable
or unstable for reasonable parameter choices. To answer this question we now
calibrate the model and then compute numerically the four eigenvalues that
determine the stability properties of the steady state. We use the functional
forms and the parameter values of Huffman and Wynne (1999), who calibrate
a two-sector model similar to our’s but with constant returns in both sectors, so
θc = θx = 0 in their model. This difference does not affect the usefulness of
their calibration for our purposes because the degrees of increasing returns do
not affect the calibration of the other parameters. The specific assumptions of
Huffman and Wynne are thatσ = 1 (so the period–utility in consumption is log-
arithmic) and thatf is of the form (8). Using quarterly, postwar, one-digit US
data, Huffman and Wynne calibrateδc = 0.018,δx = 0.020,a = 0.41,b = 0.34,
andρ = 0.01. Moreover, they calibrateε = 0.1 or ε = 0.3, depending on the
procedure.14

The equations for the linearized reduced–form equilibrium dynamics with
strictly quasi–convexf , (B.7)–(B.9), show that the dynamics are independent of
θc, so we need to choose a value only forθx. The available evidence on increas-
ing returns is rather mixed. However, it is non-controversial that Hall’s (1988)
initial estimates of aggregate increasing returns of about 0.5 were upward bi-
ased. More recent empirical studies instead find estimates between constant re-
turns and milder increasing returns up to 0.3; see e.g. Bartelsman et al. (1994),
Burnside et al. (1995), or Basu and Fernald (1997). According to Basu and
Fernald (1997) these aggregate increasing returns are mainly due to increasing

14See their paper for the details.
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Figure 1: Local stability forintratemporaladjustment costs and
σ = 1, ρ = 0.01,δc = 0.018,δx = 0.020,a = 0.41,b = 0.34.
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returns in the capital–producing sector; specifically they estimate non-durable
manufacturing to have constant returns and durable manufacturing to have in-
creasing returns up to 0.36. Sinceθx is a key parameter determining the local
stability properties of the steady state and since it is hard to draw a sharp line
between empirically plausible and implausible values for it, we will vary it ex-
tensively together with the other key parameterε. Specifically, we will explore
the local stability properties of the steady state for allθx ∈ (0.000,0.900) and
ε ∈ (0.000,0.400).15

Our numerical results are reported in Figure 1. They confirm the analytical
result of Proposition 2 that an upward-sloping (downward-sloping) labor de-
mand curve in the capital–producing is a necessary condition for local indeter-
minacy (determinacy).16 Our numerical results go beyond the analytical ones in
three respects. First, they show that, given the calibration used here, an upward-
sloping (downward-sloping) labor demand curve in the capital–producing be-

15ε = 0.000000001 is the value closest to zero that we try in these computations.
16Given the calibration used here, the labor demand curve slopes upward if and only ifθx > 0.51.
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comes a sufficient condition for local indeterminacy (determinacy) when the
intratemporal capital adjustment costs are sufficiently large (ε ≥ 0.119). Sec-
ond, they show that, given the calibration used here and capital adjustment costs
within the range calibrated by Huffman and Wynne,ε ∈ [0.1,0.3], the steady
state is determinate if the increasing returns do not exceed 0.483. The range
θx ∈ [0,0.483] includes all values of increasing returns that are usually con-
sidered reasonable. So, givenε ∈ [0.1,0.3], the local stability properties with
a strictly quasi–convexf are summarized by determinacy for every empiri-
cally plausible specification ofθx. Third, our numerical results show that, given
the calibration used here, arbitrarily small capital adjustment costs make the
equilibrium determinate forθx ∈ (0,0.197), whereas Proposition 2 shows that
without capital adjustment costs the equilibrium is locally indeterminate for
θx ∈ (0.072,0.197). Thus, the steady state with small capital adjustment cost is
saddle–path stable in the region of increasing returns in which the steady state
without them is stable.17

It should be pointed out that there is a possibility for global indeterminacy.
This follows from the additional piece of information that at the bifurcation
to “instability” two of the eigenvalues are complex and their real parts change
sign, that is, a Hopf bifurcation occurs. The Hopf bifurcation theorem implies
the existence of limit cycles, which may or may not be stable. If they are stable,
then a form of global indeterminacy occurs. Since the Hopf bifurcation does
not occur for plausible parameter values, we do not study this issue.

We complete this section with a brief discussion of the robustness of our
numerical findings, which we have explored in two directions. First, we have
shown that our numerical determinacy result survives for reasonable variations
of the parameter values used above. The details of this sensitivity analysis
are reported in a technical appendix that is available upon request. Second, we
have shown that our numerical determinacy result survives for the intertemporal
capital adjustment costs of the form suggested by Lucas and Prescott (1971). In
fact, it turns out that these intertemporal capital adjustment costs make it even
harder to get local indeterminacy than the intratemporal ones considered in this
paper. The details can be found in Herrendorf and Valentinyi (2002).

17This third result has a similar flavor as the recent result of Shannon and Zame (2002), who show that ruling
out preferences with perfect substitutability between different consumption goods can bring about determinacy in
an exchange economy.
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5 Conclusion

We have explored the conditions under which indeterminacy of equilibrium oc-
curs nearby the steady state in a class of two-sector neoclassical growth models
with sector–specific externalities. Our main finding has been that a strictly con-
cave production possibility frontier between the two new capital goods, which
captures intratemporal capital adjustment costs, precludes local indeterminacy
for every empirically plausible specification of the model parameters. This ana-
lytical result contrasts sharply with the standard result that with a linear produc-
tion possibility frontier, local indeterminacy can occur in the two-sector model
for a wide range of plausible parameter values. It can be interpreted to mean
that local indeterminacy is not a robust property of the class of two-sector neo-
classical growth models with sector–specific externalities. We conjecture that
this result is likely to carry over to models with more than two sectors and more
than two capital goods.

Our findings are relevant for several reasons. To begin with, if local in-
determinacy is impossible for plausible specifications of the parameter values,
then self-fulfilling business cycles are impossible for plausible specifications
of the parameter values. Since self-fulfilling business cycles are often ineffi-
cient whereas business cycles driven by fundamental shocks are often efficient,
this has important implications for the debate about whether or not government
policy should aim to stabilize business cycles. Second, models from the class
of two-sector neoclassical growth models that we have studied here are widely
used; see for example Fisher (1997), Huffman and Wynne (1999), and Boldrin
et al. (2001). Our results provide a better understanding of the local stability
properties of this important class of models. Finally, our study contributes to
a recent debate about the robustness of multiple and indeterminate equilibria.
Even though Morris and Shin (1998) and Herrendorf et al. (2000) studied rather
different environments with externalities, they share a common theme with the
present paper: the introduction of frictions can substantially reduce the scope
for the multiplicity or local indeterminacy of equilibrium.
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Appendix

A Proof of Proposition 1

A.1 Strictly quasi–convexf

A.1.1 Reduced-form dynamics

Suppose that all first-order conditions hold with equality. (1c) and (2b)-(2d)
then imply

k̇ct = xct − δckct, k̇xt = xxt − δxkxt, (A.1a)
µ̇ct = µct(δc + ρ) −

rct

wct
, µ̇xt = µxt(δx + ρ) −

rxt

wxt
. (A.1b)

To represent the model economy as a dynamical system inkct, kxt, µct, andµxt,
we need to express all endogenous variables, i.e.xct, xxt, lct, lxt, rct, rxt, pct, pxt,
wct, andwxt, as functions of these four variables. Establishing this is the first
step of the proof.

To begin with, note that (2a) implies thatpct

pxt
=
µct

µxt
, so (6c) and (6d) (with

equality) together with the strict quasi–convexity oft imply that there is a func-
tion g such that:

g
(
µct

µxt

)
≡
(

fc
fx

)−1 (µct

µxt

)
= xct

xxt
. (A.2a)

Next, observe that dividing (4a) by (4b) and (6a) by (6b) and using (A.3a), we
can express the factor price ratios as functions of the corresponding factors:

rct

wct
= a

1−a
lct

kct

rxt

wxt
= b

1−b
lxt

kxt
. (A.2b)

Now, we derive labor in the consumption-producing sector. Combining
(2b), (3b) and (4b) gives:

lct = 1− a. (A.3a)

Turning to labor in the capital–producing sector, observe that (2b) implies 1=

µxt
wxt

pxt
. Substituting (6b) and (6b) into this leads to

1 = (1− b)µxtk
β1
xt l
β2−1
xt

[
fx

(
g
(
µct

µxt

)
,1
)]−1
,
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where we used the fact thatf ( · , · ) is homogeneous of degree one, and (A.2a).
Rearranging leads to the reduced form for labor in the capital–producing sector:

lxt = lx(kxt, µct, µxt) ≡ [(1 − b)µxt]
1

1−β2 fx

(
g
(
µct

µxt

)
,1
) 1
β2−1 k

β1

1−β2
xt . (A.3b)

Substituting (A.3a) and (A.3b) into (A.2b) forlc and lx, rearranging and plug-
ging the result into (A.1b) gives:

µ̇ct = Fµc(kct, kxt, µct, µxt) ≡ (ρ + δc)µct −
a
kct
, (A.4a)

µ̇xt = Fµx(kct, kxt, µct, µxt) ≡ (ρ + δx)µxt

− b
1−b

[
(1− b)µxt

] 1
1−β2 fx

(
g
(
µct

µxt

)
,1
) 1
β2−1 k

β1+β2−1
1−β2

xt . (A.4b)

Next, we derive the expressions for each type of investment. Substituting
(9) and (A.2a) into (5b) gives

kβ1
xt l
β2
xt = xct

f
(
g
(µct

µxt

)
,1
)

g
(µct

µxt

) = xxt f
(
g
(
µct

µxt

)
,1
)
.

To eliminatelxt from these expressions, we use (A.3b). Solving afterwards for
xct andxxt gives:

xct = xc(kxt, µct, µxt) ≡ [(1 − b)µxt]
β2

1−β2

g
(µct

µxt

)
fx

(
g
(µct

µxt

)
,1
) β2

β2−1

f
(
g
(µct

µxt

)
,1
) k

β1

1−β2
xt ,

xxt = xx(kxt, µct, µxt) ≡ [(1 − b)µxt]
β2

1−β2

fx

(
g
(µct

µxt

)
,1
) β2

β2−1

f
(
g
(µct

µxt

)
,1
) k

β1

1−β2
xt .

Substituting the above reduced forms forxct, xxt, into (A.1a) and rearranging,
we find the reduced–form equilibrium dynamics:

k̇ct = Fkc(kct, kxt, µct, µxt)≡ [(1−b)µxt]
β2

1−β2

g
(µct

µxt

)
fx

(
g
(µct

µxt

)
,1
) β2

β2−1

f
(
g
(µct

µxt

)
,1
) k

β1

1−β2
xt −δckct, (A.4c)

k̇xt = Fkx(kct, kxt, µct, µxt) ≡ [(1 − b)µxt]
β2

1−β2

fx

(
g
(µct

µxt

)
,1
) β2

β2−1

f
(
g
(µct

µxt

)
,1
) k

β1

1−β2
xt − δxkxt. (A.4d)
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A.1.2 Existence and uniqueness of steady state

Representing variables in steady state by dropping the time indext and assum-
ing that all first-order conditions hold with equality, the steady state versions of
(A.4b) and (A.4d) are found to be:

δxk
1−β1−β2

1−β2
x = [(1 − b)µx]

β2

1−β2

fx

(
g
(µc

µx

)
,1
) β2

β2−1

f
(
g
(µc

µx

)
,1
) , (A.5a)

(ρ + δx)k
1−β1−β2

1−β2
x = b[(1 − b)µx]

β2

1−β2 fx

(
g
(
µc

µx

)
,1
) 1
β2−1 . (A.5b)

Dividing the second equation by the first one leads to

ρ+δx

bδx
=

f
(
g
(µc

µx

)
,1
)

fx

(
g
(µc

µx

)
,1
) . (A.6)

Given the assumed properties off , this expression can be solved uniquely for
µc

µx
, so the steady state shadow price ratio is uniquely determined by the param-

eters of the model. From now on we will therefore writef , fx, andg for the
unique steady state values of these functions. We can then write (A.4a), (A.4c),
and (A.4d) evaluated at the steady state as follows:

µct =
a
ρ+δc

k−1
ct , (A.7a)

δckc =
[(1−b)µx]

β2

1−β2 g f

β2

β2−1
x

f k
β1

1−β2
x , (A.7b)

δxkx =
[(1−b)µx]

β2

1−β2 f

β2

β2−1
x

f k
β1

1−β2
x . (A.7c)

To show uniqueness, we will show thatkc, µx, andµc are functions ofkx. We
will then show thatkx is uniquely determined by the parameters of the model.
Dividing (A.7b) by (A.7c) giveskc as a function ofkx:

kc =
δx

δcg
kx. (A.8)

Since from (A.7a)µc is a function ofkc, (A.8) implies thatµc is a function ofkx.
Since from (A.6)µx is a function ofµc, (A.8) implies thatµx is a function ofkx.
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Finally, substitutingµx(kx) into (A.7c), we find thatkx is uniquely determined
by the parameters of the model.

We complete this part of the proof by noting that the non-negativity con-
straints on the investment goods are not binding in either steady state, because
xi = δiki is strictly positive forδi ∈ (0,1). This justifies the above assumption
that all first-order conditions hold with equality at the steady state. This also im-
plies that there will be neighborhood of the steady state in which all first-order
conditions hold with equality.

A.2 Linear f

A.2.1 Reduced-form dynamics

Assuming interior solutions and following the same steps as before, one can
show that with a linearf the equilibrium dynamics are characterized by the
following equations:

k̇ct = xct − δckct, k̇xt = xxt − δxkxt, kβ1
xt l
β2
xt = fcxct + fxxxt, (A.9a)

lct = (1− a), lxt =
[

(1−b)µxt

fx

] 1
1−β2 k

β1

1−β2
xt , (A.9b)

µct

µxt
=

fc
fx
, µ̇ct = µct(ρ + δc) − a

1−a
lct

kct
, µ̇xt = µxt(ρ + δx) − b

1−b
lxt

kxt
. (A.9c)

If none of the non-negativity constraints onxct andxxt binds, then we can reduce
these equations to three equations inkct, kxt, andµct that describe the reduced–
form equilibrium dynamics:

fck̇ct + fxk̇xt =
[

(1−b)µct

fc

] β2

1−β2 k
β1

1−β2
xt − fcδckct − fxδxkxt, (A.10a)

µ̇ct = µct(ρ + δc) − a
kct
, (A.10b)

0 = fxµct(δx − δc) +
a fx
kct
−

fcb
1−b

[
(1−b)µct

fc

] 1
1−β2 k

β1+β2−1
1−β2

xt . (A.10c)

Note that unlike for a strictly quasi–convexf , we cannot analytically reduce
these three equations to two equations that characterize fully the reduced–form
equilibrium dynamics.
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A.2.2 Existence and uniqueness of steady state

In steady state, the three equations in (A.10) become:

0 =
[

(1−b)µc

fc

] β2

1−β2 k
β1

1−β2
x − fcδckc − fxδxkx, (A.11a)

0 = µc(ρ + δc) − a
kc
, (A.11b)

0 = fxµc(δx − δc) +
a fx
kc
−

fcb
1−b

[
(1−b)µc

fc

] 1
1−β2 k

β1+β2−1
1−β2

x . (A.11c)

The existence and uniqueness of the steady state can be shown as follows. First,
(A.11b) implies thatkc is a function ofµc. Second, substituting the result into
(A.11c) implies thatkx too is a function ofµc. Third, substituting these two
expressions into (A.11a) and rearranging gives the steady state value forµc.
Finally, (A.9) shows that all other steady state variables are functions ofkc, kx,
andµc.

We complete the proof by noting that the non-negativity constraints on the
investment goods are not binding in either steady state, becausexi = δiki is
strictly positive forδi ∈ (0,1). This justifies the above assumption that all first-
order conditions hold with equality at the steady state. This also implies that
there will be neighborhood of the steady state in which all first-order conditions
hold with equality.

B Proof of Proposition 2

B.1 Linear f

B.1.1 Computation of the determinant and the trace

We start with the linearization of (A.10) at the steady state:

k̇t =
β2

1−β2

fcδckc+fxδxkx

µc
(µct − µc)+

[
β1

1−β2

fcδckc+ fxδxkx

kx
− fx(δx − δc)

]
(kxt−kx)−δc(kt−k),

µ̇ct = (ρ + δc)(µct − µc) −
fx(ρ+δc)µc

fckc
(kxt − kx) +

(ρ+δx)µc

fckc
(kt − k),

0 =
[
−(ρ + δc) + (ρ + δx) − 1

1−β2
(ρ + δx)

]
(µct − µc)

+
[

fx(ρ+δc)µc

fckc
−
β1+β2−1

1−β2

(ρ+δx)µc

kx

]
(kxt − kx) +

(ρ+δc)µc

fckc
(kt − k)
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wherekt ≡ fckc + fxkx. Rearranging gives:

k̇t =
β2

1−β2

ρ+δx

b
fxkx

µc
(µct − µc) +

[
β1

1−β2

ρ+δx

b − (δx − δc)
]

fx(kxt − kx) − δc(kt − k),

µ̇ct = (ρ + δc)(µct−µc) −
(ρ+δc)[ρ+(1−b)δx]

δxb
µc

kx
(kxt−kx) +

(ρ+δx)δcb
ρ+(1−b)δx

µc

fxkx
(kt−k),

0 = −
[
(ρ + δc) +

β2

1−β2
(ρ + δx)

]
(µct − µc)

+
[

fx(ρ+δc)δcb
ρ+(1−b)δx

−
β1+β2−1

1−β2
(ρ + δx)

]
µc

kx
(kxt − kx) +

(ρ+δc)δcb
ρ+(1−b)δx

µc

fxkx
(kt − k).

The last equation can be solved forkxt − kx

kxt − kx =
kx

µc

[(1−β2)(ρ+δc)+β2(ρ+δx)](µct−µc)+(1−β2)
δcb(ρ+δc)
ρ+(1−b)δx

µc

fxkx
(kt−k)

(1−β2)
bδc(ρ+δc)
ρ+(1−b)δx

−(ρ+δx)(β1+β2−1)
,

Substituting this back to the two dynamic equations leads to[
k̇t

µ̇ct

]
=

[
a11 a12

a21 a22

] [
kt − k
µct − µc

]
, (B.1)

where

a11 =

(ρ+δc)(β1(ρ+δx)−(1−β2)bδx)
ρ+(1−b)δx

+(ρ+δx)(β1+β2−1)

(1−β2)
bδc(ρ+δc)
ρ+(1−b)δx

−(ρ+δx)(β1+β2−1)
, (B.2a)

a12 =

 β2

1−β2

ρ+δx

b +

[
β1

1−β2

ρ+δx

b +(δc−δx)

]
[(ρ+δc)−β2(δc−δx)]

(1−β2)
bδc(ρ+δc)
ρ+(1−b)δx

−(ρ+δx)(β1+β2−1)

 fxkx

µc
, (B.2b)

a21 = −
(β1+β2−1)b(ρ+δc)

ρ+δx

ρ+(1−b)δx

(1−β2)
bδc(ρ+δc)
ρ+(1−b)δx

−(ρ+δx)(β1+β2−1)

µc

fxkx
, (B.2c)

a22 = −
(ρ+δc)

[
bδc(ρ+δx)
ρ+(1−b)δx

+(ρ+δx)(β1+β2−1)

]
(1−β2)

bδc(ρ+δc)
ρ+(1−b)δx

−(ρ+δx)(β1+β2−1)
. (B.2d)

The determinant and the trace of the matrix in (B.1) are found to be:

Det= δc(ρ+δc)[ρ+(1−b)δx](1−β1)
(ρ+δx)[ρ+(1−b)δx](β1+β2−1)−bδc(δc+ρ)(1−β2) , (B.3a)

Tr = ρ(ρ+δx)[ρ+(1−b)δx](β1+β2−1)+δc(δc+ρ)[b(δx+ρβ2)−β1(ρ+δx)]
(ρ+δx)[ρ+(1−b)δx](β1+β2−1)−bδc(δc+ρ)(1−β2) . (B.3b)

24



B.1.2 Characterization of the stability properties

The steady state is saddle–path stable if Det< 0, it is stable if Tr< 0 < Det, and
it is unstable if Tr,Det> 0. In order to characterize the different cases, first note
that the denominators of the trace and the determinant are the same. Second, the
numerator of the determinant is always positive. So the local stability properties
will depend only on the signs of the numerator of the trace and on the common
denominator. Throughβ1 andβ2 they both depend onθx, so we will writeN(θx)
and D(θx). To find their signs, we first find the values ofθx for which they
become zero:

D(
¯
θx) = 0⇐⇒

¯
θx =

b2δc(ρ+δc)
(ρ+δx)[ρ+(1−b)δx]+(1−b)bδc(ρ+δc)

(B.4a)

N(θ̄x) = 0⇐⇒ θ̄x =
b2δc(ρ+δc)

(ρ+δx)[ρ+(1−b)δx]−
ρb+δx

ρ
bδc(ρ+δc)

(B.4b)

We can see thatD(θx) < 0 if and only ifθx <
¯
θx, D(θx) > 0 if and only ifθx >

¯
θx,

N(θx) < 0 if and only if θx < θ̄x, andN(θx) > 0 if and only if θx > θ̄x. Now, if
the condition in (i.a) holds then 0<

¯
θx < θ̄x and if the condition in (i.b) holds

then
¯
θx < 0 < θ̄x. Using this to determine the signs of the determinant and the

trace proves our claims.

B.2 Strictly quasi–convexf

B.2.1 Computation of the determinant and the trace

We again represent the steady values off , g, and their derivatives by dropping
their arguments, sof ≡ f

(
xc

xx
,1
)
, g ≡ g

(
xc

xx

)
, etc. We start the proof by listing

some helpful identities that have to hold in our model. First, the definition ofg
as the inverse offcfx

implies that

g′ = f 2
x

fcc fx− fc fxc
. (B.5a)

Second, the linear homogeneity off implies:

f = g fc + fx, 0 = g fcc+ fcx, 0 = fxx+ g fcx. (B.5b)

Third, (A.6) and (B.5b) give
ρ+δx(1−b)

bδx
=

g fc
fx
, ρ+δx(1−b)

ρ+δx
=

g fc
f , (B.6a)
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Finally, using this and (B.5a), we find:

fxc

fx
g′ µc

µx
=

fxc fc
fcc fx− fc fxc

= −
g fc

fx+g fc
= −

ρ+δx(1−b)
ρ+δx

(B.6b)

The first step of the derivation of the determinant and the trace is to linearize
the reduced-form dynamics at the steady state. Indicating steady state variables
by dropping the time subscript, the result is:

k̇ct

k̇xt

µ̇ct

µ̇xt

 =

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44



kct − kc

kxt − kx

µct − µc

µxt − µx

 , (B.7)

where:18

a11 = −δc, a12 =
β1

1−β2

δckc

kx
, a13 =

[
g′

g
µc

µx
−
β2

1−β2

fxc

fx
g′ µc

µx
−

g fc
f

g′

g
µc

µx

]
δckc

µc
,

a14 =
[
β2

1−β2
−

g′

g
µc

µx
+
β2

1−β2

fxc

fx
g′ µc

µx
+

fc
f g′ µc

µx

]
δckc

µx
, a21 = 0, a22 =

β1

1−β2

δxkx

kx
− δx,

a23 =
[
β2

1−β2

fxc

fx
g′ µc

µx
−

fc
f g′ µc

µx

]
δxkx

µc
, a24 =

[
β2

1−β2
−
β2

1−β2

fxc

fx
g′ µc

µx
+

g fc
f

g′

g
µc

µx

]
δxkx

µx
,

a31 =
(ρ+δc)µc

kc
, a32 = 0, a33 = ρ + δc, a34 = 0,

a41 = 0, a42 =
β1+β2−1

1−β2

(ρ+δx)µx

kx
, a43 =

1
1−β2

fxc

fx
g′ µc

µx

(ρ+δx)µx

µc
,

a44 = (ρ + δx) − 1
1−β2

(ρ + δx) − 1
1−β2

(ρ + δx)
fxc

fx
g′ µc

µx
.

To simplify these expressions, it is useful to define the elasticity of the invest-
ment ratio with respect to the relative price evaluated at the steady state. Denot-
ing the inverse of that elasticity byε ≥ 0, we have:

ε ≡
g
(µc

µx
,1
)

g′
(µc

µx
,1
) 1
µc

µx

. (B.8)

Now, using (B.6a) and (B.6b), the previous terms can be rewritten:

a11 = −δc, a12 =
β1

1−β2

δckc

kx
, a13 =

[
β2

1−β2
+ 1
ε

1−(1+ε)β2

1−β2

δxb
ρ+δx

]
δckc

µc
, (B.9a)

a14 = −
1
ε

1−(1+ε)β2

1−β2

δckc

µx

δxb
ρ+δx
, a21 = 0, a22 = δx

β1+β2−1
1−β2

, (B.9b)

18To find these expressions we have repeatedly used the fact that if a function is of the formh(x1, x2, x3) =
xα1 xβ2 − ax3, then its partial derivative can be written as∂h

∂x1
= α f (x1,x2,x3)+ax3

x1
.
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a23 = −
1
ε

1−(1+ε)β2

1−β2

δxkx

µc

ρ+δx(1−b)
ρ+δx

, a24 =
[
β2

1−β2
+ 1
ε

1−(1+ε)β2

1−β2

ρ+δx(1−b)
ρ+δx

]
δxkx

µx
, (B.9c)

a31 =
(ρ+δc)µc

kc
, a32 = 0, a33 = ρ + δc, a34 = 0, (B.9d)

a41 = 0, a42 = −
β1+β2−1

1−β2

µx

kx
(ρ + δx), (B.9e)

a43 = −
1

1−β2
[ρ + δx(1− b)] µx

µc
, a44 = (ρ + δx) − 1

1−β2
δxb. (B.9f)

The second step is to combined the terms just derived and actually compute
the determinant and the trace. Using the fact thata32 = a34 = a41 = 0, the
determinant can be written as

Det= a31a42(a13a24− a14a23) + a22a31(a14a43− a13a44)
+ a11a33(a22a44− a24a42) + a12a31(a23a44− a24a43).

Using the previous expressions, the four terms in that determinant are found to
equal:

a31a42(a13a24− a14a23) = −1
ε
β2

1−β2

β1+β2−1
1−β2

δcδx(ρ + δc)(ρ + δx),

a22a31(a14a43− a13a44) =
β1+β2−1

1−β2

β2

1−β2

(1+ε)δxb−ε(ρ+δx)
ε

δcδx(ρ + δc),

a11a33(a22a44− a24a42) = −
β1+β2−1

1−β2

1+ε
ε
δxδc(ρ + δc)[ρ + δx(1− b)],

a12a31(a23a44− a24a43) =
β1

1−β2

β2

1−β2

1+ε
ε
δcδx(ρ + δc)[ρ + δx(1− b)].

Using these expressions and simplifying, we find the determinant:

Det= 1+ε
ε
δcδx(ρ+δc)[ρ+δx(1−b)](1−β1)

1−β2
. (B.10)

In general form the trace is given by:

Tr = a11+ a22+ a33+ a44.

Substituting in the previous expressions foraii , we find the trace:

Tr = 2ρ + δx
β1−b
1−β2
. (B.11)
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B.2.2 Characterization of the stability properties

We start with the caseθx ∈ [0, b
1−b), implying thatβ2 < 1. Then Det> 0 and

Tr > 0.19 Now suppose that the steady state were stable. Then (B.7) would have
three or four eigenvalues with negative real parts. If (B.7) had four eigenvalues
with negative real parts, then the trace would have to be negative, which is a
contraction. If (B.7) had three eigenvalues with negative real part, then the
determinant would have to be negative, which is a contradiction.

We continue with the caseθx ∈ [ b
1−b,

1−b
b ), implying thatβ2 > 1. Then Det<

0. Suppose that the steady state were saddle–path stable. Then (B.7) would have
two eigenvalues with negative real part and two eigenvalues with positive real
part. Irrespective of whether they are real or complex conjugates, this would
imply that the determinant must become positive, which is a contraction.

C Proof of Proposition 3

The proof of this proposition follows because usingµx

µc
=

fx

fc
, one can show that

the limits of the steady state versions of the four equations in (A.4), which char-
acterize uniquely the steady state with quasi-convexf , imply the three equa-
tions in (A.11), which characterize uniquely the steady state with linearf . In
particular, fc times (A.4c) plusfx times (A.4d) converges to (A.11a). Second,
(A.4a) is identical to equation (A.11b). Third,fc times (A.4b) minusfx times
(A.4a) converges to (A.11c).

D Proof of Proposition 4

We start by defining the production possibility frontier between the consump-
tion good,ct, and the composite investment good,xt ≡ f (xct, xxt):

max
xct−∆t,xxt−∆t,lxt,lct

xt(ct) (D.1a)

s.t. xt ≤ kβ1
xt l
β2
xt , ct ≤ kα1

ct l
α2
ct , lct + lxt ≤ l̄t, (D.1b)

kct≤ (xct−∆t−δck̄ct−∆t)∆t+k̄ct−∆t, kxt≤ (xxt−∆t−∆xk̄xt−∆t)∆t+k̄xt−∆t, (D.1c)
f (xct−∆t, xxt−∆t) ≤ x̄t−∆t, (D.1d)

19Recall thatβ1 = (1+ θx)b, soβ1 − b = θxb ≥ 0.
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wherel̄t, k̄ct−∆t, k̄xt−∆t, x̄t−∆t are given. The solution to this problem determines
for given feasiblect the maximal level ofxt. We use∆t in writing this problem
because of the sector–specificity of capital, which means that at some timet−∆t,
∆ being small, the two new capital goods need to be chosen.

Now rewrite the problem as:

max
xct−∆t,xxt−∆t,lxt

[
(xxt−∆t − δxk̄xt−∆t)∆t + k̄xt−∆t

]β1
lβ2
xt (D.2a)

s.t. ct =
[
(xct−∆t − δck̄ct−∆t)∆t + k̄ct−∆t

]α1
[
l̄t − lxt

]α2
, (D.2b)

x̄t−∆t = f (xct−∆t, xxt−∆t). (D.2c)

The necessary first-order conditions are:

xt =
[
xxt−∆t − δxk̄xt−∆t)∆t + k̄xt−∆t

]β1
lβ2

xt−∆t (D.3a)

ct =
[
(xct−∆t − δck̄ct−∆t)∆t + k̄ct−∆t

]α1
[
l̄t − lxt

]α2
(D.3b)

b
1−b

lxt

(xxt−∆t−δxk̄xt−∆t)∆t+̄kxt−∆t

fc(xct−∆t,xxt−∆t)
fx(xct−∆t,xxt−∆t)

= a
1−a

l̄t−lxt

(xct−∆t−δck̄ct−∆t)∆t+̄kct−∆t
, (D.3c)

x̄t−∆t = f (xct−∆t, xxt−∆t). (D.3d)

These four equations define the production possibility frontier betweenct and
xt.

Inspecting the optimization problem in (D.2) forf (xct, xxt) = fcxct + fxxxt,
we can see that the constraint (D.2c) becomes

x̄t−∆t = fcxct−∆t + fxxxt−∆t. (D.2c′)

Therefore the first-order conditions are (D.3a) and (D.3b) as before and

b
1−b

lxt+∆t

(xxt−∆t−δxkxt−∆t)∆t+kxt−∆t

fc
fx
= a

1−a
l̄t+∆t−lxt+∆t

(xct−∆t−δckct−∆t)∆t+kct−∆t
. (D.3c′)

fcxct−∆t + fxxxt−∆t = x̄t−∆t. (D.3d′)

(D.3c) and (D.3d) converge to (D.3c′) and (D.3d′) as fi → f in U(xc, xx).
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